自适应模糊神经控制在水浴过程中的应用

M. Khalid, S. Omatu, R. Yusof
{"title":"自适应模糊神经控制在水浴过程中的应用","authors":"M. Khalid, S. Omatu, R. Yusof","doi":"10.1109/CCA.1994.381231","DOIUrl":null,"url":null,"abstract":"The emergence of artificial neural networks has made it conducive to integrate fuzzy logic controllers and neural models for the development of adaptive fuzzy control systems. In this paper, the authors proposed an adaptive fuzzy-neural control scheme by integrating two neural network models with a basic fuzzy logic controller. Using the backpropagation algorithm the first neural network is trained as a plant emulator and the second neural network is used as a compensator for the basic fuzzy controller to improve its performance on-line. The function of the neural network plant emulator is to provide the correct error signal at the output of the neural fuzzy compensator without the need for any mathematical modeling of the plant. The difficulty of fine-tuning the scale factors and formulating the correct control rules in a basic fuzzy controller may be reduced using the proposed scheme. The scheme is applied to the temperature control of a water bath process. The performance of the adaptive fuzzy-neural controller is compared to the basic fuzzy logic controller and a conventional digital-PI controller under identical conditions of varying complexities in the process. The experimental results show that the adaptive fuzzy-neural control scheme is superior in performance than the other two controllers.<<ETX>>","PeriodicalId":173370,"journal":{"name":"1994 Proceedings of IEEE International Conference on Control and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adaptive fuzzy-neuro control with application to a water bath process\",\"authors\":\"M. Khalid, S. Omatu, R. Yusof\",\"doi\":\"10.1109/CCA.1994.381231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of artificial neural networks has made it conducive to integrate fuzzy logic controllers and neural models for the development of adaptive fuzzy control systems. In this paper, the authors proposed an adaptive fuzzy-neural control scheme by integrating two neural network models with a basic fuzzy logic controller. Using the backpropagation algorithm the first neural network is trained as a plant emulator and the second neural network is used as a compensator for the basic fuzzy controller to improve its performance on-line. The function of the neural network plant emulator is to provide the correct error signal at the output of the neural fuzzy compensator without the need for any mathematical modeling of the plant. The difficulty of fine-tuning the scale factors and formulating the correct control rules in a basic fuzzy controller may be reduced using the proposed scheme. The scheme is applied to the temperature control of a water bath process. The performance of the adaptive fuzzy-neural controller is compared to the basic fuzzy logic controller and a conventional digital-PI controller under identical conditions of varying complexities in the process. The experimental results show that the adaptive fuzzy-neural control scheme is superior in performance than the other two controllers.<<ETX>>\",\"PeriodicalId\":173370,\"journal\":{\"name\":\"1994 Proceedings of IEEE International Conference on Control and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1994 Proceedings of IEEE International Conference on Control and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.1994.381231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 Proceedings of IEEE International Conference on Control and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1994.381231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

人工神经网络的出现,使得模糊逻辑控制器与神经模型相结合,有利于自适应模糊控制系统的发展。本文提出了一种将两个神经网络模型与一个基本模糊逻辑控制器相结合的自适应模糊神经控制方案。利用反向传播算法训练第一个神经网络作为植物模拟器,第二个神经网络作为补偿器用于基本模糊控制器,以提高其在线性能。神经网络植物仿真器的功能是在不需要对植物进行任何数学建模的情况下,在神经模糊补偿器的输出端提供正确的误差信号。该方法可以降低基本模糊控制器中尺度因子的微调和正确控制规则的制定难度。该方案应用于水浴过程的温度控制。在不同复杂程度的相同条件下,将自适应模糊神经控制器与基本模糊逻辑控制器和传统数字pi控制器的性能进行了比较。实验结果表明,自适应模糊神经控制方案的性能优于其他两种控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive fuzzy-neuro control with application to a water bath process
The emergence of artificial neural networks has made it conducive to integrate fuzzy logic controllers and neural models for the development of adaptive fuzzy control systems. In this paper, the authors proposed an adaptive fuzzy-neural control scheme by integrating two neural network models with a basic fuzzy logic controller. Using the backpropagation algorithm the first neural network is trained as a plant emulator and the second neural network is used as a compensator for the basic fuzzy controller to improve its performance on-line. The function of the neural network plant emulator is to provide the correct error signal at the output of the neural fuzzy compensator without the need for any mathematical modeling of the plant. The difficulty of fine-tuning the scale factors and formulating the correct control rules in a basic fuzzy controller may be reduced using the proposed scheme. The scheme is applied to the temperature control of a water bath process. The performance of the adaptive fuzzy-neural controller is compared to the basic fuzzy logic controller and a conventional digital-PI controller under identical conditions of varying complexities in the process. The experimental results show that the adaptive fuzzy-neural control scheme is superior in performance than the other two controllers.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability issues in a disturbance attenuation based technique for manipulator control /spl mu/-optimal advanced PID control of an industrial high purity distillation column Robust controller design based on guaranteed cost control approach for rigid robots H/sub /spl infin// control of a flexible arm: coprime factors design using the gap metric Prediction in real-time control using adaptive networks with on-line learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1