{"title":"自适应模糊神经控制在水浴过程中的应用","authors":"M. Khalid, S. Omatu, R. Yusof","doi":"10.1109/CCA.1994.381231","DOIUrl":null,"url":null,"abstract":"The emergence of artificial neural networks has made it conducive to integrate fuzzy logic controllers and neural models for the development of adaptive fuzzy control systems. In this paper, the authors proposed an adaptive fuzzy-neural control scheme by integrating two neural network models with a basic fuzzy logic controller. Using the backpropagation algorithm the first neural network is trained as a plant emulator and the second neural network is used as a compensator for the basic fuzzy controller to improve its performance on-line. The function of the neural network plant emulator is to provide the correct error signal at the output of the neural fuzzy compensator without the need for any mathematical modeling of the plant. The difficulty of fine-tuning the scale factors and formulating the correct control rules in a basic fuzzy controller may be reduced using the proposed scheme. The scheme is applied to the temperature control of a water bath process. The performance of the adaptive fuzzy-neural controller is compared to the basic fuzzy logic controller and a conventional digital-PI controller under identical conditions of varying complexities in the process. The experimental results show that the adaptive fuzzy-neural control scheme is superior in performance than the other two controllers.<<ETX>>","PeriodicalId":173370,"journal":{"name":"1994 Proceedings of IEEE International Conference on Control and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adaptive fuzzy-neuro control with application to a water bath process\",\"authors\":\"M. Khalid, S. Omatu, R. Yusof\",\"doi\":\"10.1109/CCA.1994.381231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of artificial neural networks has made it conducive to integrate fuzzy logic controllers and neural models for the development of adaptive fuzzy control systems. In this paper, the authors proposed an adaptive fuzzy-neural control scheme by integrating two neural network models with a basic fuzzy logic controller. Using the backpropagation algorithm the first neural network is trained as a plant emulator and the second neural network is used as a compensator for the basic fuzzy controller to improve its performance on-line. The function of the neural network plant emulator is to provide the correct error signal at the output of the neural fuzzy compensator without the need for any mathematical modeling of the plant. The difficulty of fine-tuning the scale factors and formulating the correct control rules in a basic fuzzy controller may be reduced using the proposed scheme. The scheme is applied to the temperature control of a water bath process. The performance of the adaptive fuzzy-neural controller is compared to the basic fuzzy logic controller and a conventional digital-PI controller under identical conditions of varying complexities in the process. The experimental results show that the adaptive fuzzy-neural control scheme is superior in performance than the other two controllers.<<ETX>>\",\"PeriodicalId\":173370,\"journal\":{\"name\":\"1994 Proceedings of IEEE International Conference on Control and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1994 Proceedings of IEEE International Conference on Control and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.1994.381231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 Proceedings of IEEE International Conference on Control and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1994.381231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive fuzzy-neuro control with application to a water bath process
The emergence of artificial neural networks has made it conducive to integrate fuzzy logic controllers and neural models for the development of adaptive fuzzy control systems. In this paper, the authors proposed an adaptive fuzzy-neural control scheme by integrating two neural network models with a basic fuzzy logic controller. Using the backpropagation algorithm the first neural network is trained as a plant emulator and the second neural network is used as a compensator for the basic fuzzy controller to improve its performance on-line. The function of the neural network plant emulator is to provide the correct error signal at the output of the neural fuzzy compensator without the need for any mathematical modeling of the plant. The difficulty of fine-tuning the scale factors and formulating the correct control rules in a basic fuzzy controller may be reduced using the proposed scheme. The scheme is applied to the temperature control of a water bath process. The performance of the adaptive fuzzy-neural controller is compared to the basic fuzzy logic controller and a conventional digital-PI controller under identical conditions of varying complexities in the process. The experimental results show that the adaptive fuzzy-neural control scheme is superior in performance than the other two controllers.<>