基于物理信息神经网络的结构健康监测导波模拟

M. Rautela, M. Raut, S. Gopalakrishnan
{"title":"基于物理信息神经网络的结构健康监测导波模拟","authors":"M. Rautela, M. Raut, S. Gopalakrishnan","doi":"10.12783/shm2021/36297","DOIUrl":null,"url":null,"abstract":"Guided wave propagation is a valuable and reliable technique for structural health monitoring (SHM) of aerospace structures. Along with its higher sensitivity towards small damages, it offers advantages in traveling long distances with minimum attenuation. Simulation of guided wave propagation is essential to understand wave behavior, and calculating the dispersion relations forms an integral part of the procedure. Application of the current numerical techniques for complex media is highly involved and faces issues related to accuracy, stability, and computational resources. Development in the field of machine learning and graphical processing units (GPUs) leads to the implementation of a faster, automated, and scalable deep neural networks-based learning approach for such problems. Most of the implementation in the field is based on data collection and uses neural networks for nonlinear mapping from input space to target space. However, a large amount of prior information in the form of a governing differential equation is not utilized. In this paper, we have used Physics-Informed Neural Networks (PINNs), in which neural networks are utilized to solve governing partial differential equations. PINNs are implemented to obtain the solution of a one-dimensional wave equation with Dirichlet boundary conditions. The exact solutions and predicted responses match closely with lower mean square error in limited computational time. We have also conducted a detailed comparison of the effect of neural architecture on the mean square error and the training time. This study shows the merit of deep neural networks leveraging the available physical information to simulate the wave phenomenon for SHM efficiently.","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SIMULATION OF GUIDED WAVES FOR STRUCTURAL HEALTH MONITORING USING PHYSICS-INFORMED NEURAL NETWORKS\",\"authors\":\"M. Rautela, M. Raut, S. Gopalakrishnan\",\"doi\":\"10.12783/shm2021/36297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Guided wave propagation is a valuable and reliable technique for structural health monitoring (SHM) of aerospace structures. Along with its higher sensitivity towards small damages, it offers advantages in traveling long distances with minimum attenuation. Simulation of guided wave propagation is essential to understand wave behavior, and calculating the dispersion relations forms an integral part of the procedure. Application of the current numerical techniques for complex media is highly involved and faces issues related to accuracy, stability, and computational resources. Development in the field of machine learning and graphical processing units (GPUs) leads to the implementation of a faster, automated, and scalable deep neural networks-based learning approach for such problems. Most of the implementation in the field is based on data collection and uses neural networks for nonlinear mapping from input space to target space. However, a large amount of prior information in the form of a governing differential equation is not utilized. In this paper, we have used Physics-Informed Neural Networks (PINNs), in which neural networks are utilized to solve governing partial differential equations. PINNs are implemented to obtain the solution of a one-dimensional wave equation with Dirichlet boundary conditions. The exact solutions and predicted responses match closely with lower mean square error in limited computational time. We have also conducted a detailed comparison of the effect of neural architecture on the mean square error and the training time. This study shows the merit of deep neural networks leveraging the available physical information to simulate the wave phenomenon for SHM efficiently.\",\"PeriodicalId\":180083,\"journal\":{\"name\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/shm2021/36297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

导波传播是一种有价值和可靠的航空结构健康监测技术。除了对小损伤具有较高的灵敏度外,它还具有以最小衰减进行长距离传输的优势。导波传播的模拟对于理解波的行为是必不可少的,而色散关系的计算是这一过程不可分割的一部分。当前的数值技术在复杂介质中的应用是高度复杂的,并且面临着与精度、稳定性和计算资源相关的问题。机器学习和图形处理单元(gpu)领域的发展导致实现更快,自动化和可扩展的基于深度神经网络的学习方法来解决此类问题。该领域的大多数实现都是基于数据收集,并使用神经网络进行从输入空间到目标空间的非线性映射。但是,没有利用以控制微分方程形式存在的大量先验信息。在本文中,我们使用了物理信息神经网络(pinn),其中神经网络被用来求解控制偏微分方程。利用pin - ns求解具有狄利克雷边界条件的一维波动方程。在有限的计算时间内,精确解和预测响应具有较低的均方误差。我们还详细比较了神经网络结构对均方误差和训练时间的影响。该研究显示了深度神经网络利用可用的物理信息来有效地模拟SHM的波动现象的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIMULATION OF GUIDED WAVES FOR STRUCTURAL HEALTH MONITORING USING PHYSICS-INFORMED NEURAL NETWORKS
Guided wave propagation is a valuable and reliable technique for structural health monitoring (SHM) of aerospace structures. Along with its higher sensitivity towards small damages, it offers advantages in traveling long distances with minimum attenuation. Simulation of guided wave propagation is essential to understand wave behavior, and calculating the dispersion relations forms an integral part of the procedure. Application of the current numerical techniques for complex media is highly involved and faces issues related to accuracy, stability, and computational resources. Development in the field of machine learning and graphical processing units (GPUs) leads to the implementation of a faster, automated, and scalable deep neural networks-based learning approach for such problems. Most of the implementation in the field is based on data collection and uses neural networks for nonlinear mapping from input space to target space. However, a large amount of prior information in the form of a governing differential equation is not utilized. In this paper, we have used Physics-Informed Neural Networks (PINNs), in which neural networks are utilized to solve governing partial differential equations. PINNs are implemented to obtain the solution of a one-dimensional wave equation with Dirichlet boundary conditions. The exact solutions and predicted responses match closely with lower mean square error in limited computational time. We have also conducted a detailed comparison of the effect of neural architecture on the mean square error and the training time. This study shows the merit of deep neural networks leveraging the available physical information to simulate the wave phenomenon for SHM efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NONLINEAR BULK WAVE PROPAGATION IN A MATERIAL WITH RANDOMLY DISTRIBUTED SYMMETRIC AND ASYMMETRIC HYSTERETIC NONLINEARITY SPATIAL FILTERING TECHNIQUE-BASED ENHANCEMENT OF THE RECONSTRUCTION ALGORITHM FOR THE PROBABILISTIC INSPECTION OF DAMAGE (RAPID) KOOPMAN OPERATOR BASED FAULT DIAGNOSTIC METHODS FOR MECHANICAL SYSTEMS ON THE APPLICATION OF VARIATIONAL AUTO ENCODERS (VAE) FOR DAMAGE DETECTION IN ROLLING ELEMENT BEARINGS INTELLIGENT IDENTIFICATION OF RIVET CORROSION ON STEEL TRUSS BRIDGE BY SINGLE-STAGE DETECTION NETWORK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1