基于注意力特征增强模块的光流估计方法

Bingchao Zhao, Cong Peng
{"title":"基于注意力特征增强模块的光流估计方法","authors":"Bingchao Zhao, Cong Peng","doi":"10.1109/ISAS59543.2023.10164590","DOIUrl":null,"url":null,"abstract":"Optical flow estimation is one of the classic tasks in the field of vision. It calculates the motion of the target based on two continuous images. In most of the past work, the estimated optical flow often has errors in scenes of large motion or noise interference because the convolutional neural network structure often focuses on local features. To overcome the problems mentioned above, we propose a feature enhancement module that is based on the self-attention mechanism to enhance the dependencies of long-range features. Additionally, It can filter part of the noise, such as the interference of illumination in the input image. We evaluate our approach on standard benchmarks to verify motion estimation ability. To compare different results intuitively, we visualize flow fields for qualitative analysis. Eventually, we use the heat map to visualize the output of the attention layer to explore the mechanism of the attention algorithm.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Optical Flow Estimation Method Based on the Attention Feature Enhancement Module\",\"authors\":\"Bingchao Zhao, Cong Peng\",\"doi\":\"10.1109/ISAS59543.2023.10164590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical flow estimation is one of the classic tasks in the field of vision. It calculates the motion of the target based on two continuous images. In most of the past work, the estimated optical flow often has errors in scenes of large motion or noise interference because the convolutional neural network structure often focuses on local features. To overcome the problems mentioned above, we propose a feature enhancement module that is based on the self-attention mechanism to enhance the dependencies of long-range features. Additionally, It can filter part of the noise, such as the interference of illumination in the input image. We evaluate our approach on standard benchmarks to verify motion estimation ability. To compare different results intuitively, we visualize flow fields for qualitative analysis. Eventually, we use the heat map to visualize the output of the attention layer to explore the mechanism of the attention algorithm.\",\"PeriodicalId\":199115,\"journal\":{\"name\":\"2023 6th International Symposium on Autonomous Systems (ISAS)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Symposium on Autonomous Systems (ISAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAS59543.2023.10164590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAS59543.2023.10164590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光流估计是视觉领域的经典任务之一。它基于两个连续图像计算目标的运动。在过去的大多数工作中,由于卷积神经网络结构往往关注局部特征,在大运动或噪声干扰的场景下,估计的光流往往存在误差。为了克服上述问题,我们提出了一种基于自关注机制的特征增强模块来增强远程特征的依赖性。此外,它还可以滤除输入图像中的部分噪声,如照明的干扰。我们在标准基准测试中评估了我们的方法,以验证运动估计能力。为了直观地比较不同的结果,我们将流场可视化以进行定性分析。最后,我们使用热图将注意力层的输出可视化,以探索注意力算法的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Optical Flow Estimation Method Based on the Attention Feature Enhancement Module
Optical flow estimation is one of the classic tasks in the field of vision. It calculates the motion of the target based on two continuous images. In most of the past work, the estimated optical flow often has errors in scenes of large motion or noise interference because the convolutional neural network structure often focuses on local features. To overcome the problems mentioned above, we propose a feature enhancement module that is based on the self-attention mechanism to enhance the dependencies of long-range features. Additionally, It can filter part of the noise, such as the interference of illumination in the input image. We evaluate our approach on standard benchmarks to verify motion estimation ability. To compare different results intuitively, we visualize flow fields for qualitative analysis. Eventually, we use the heat map to visualize the output of the attention layer to explore the mechanism of the attention algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new type of video text automatic recognition method and its application in film and television works H∞ state feedback control for fuzzy singular Markovian jump systems with constant time delays and impulsive perturbations MMSTP: Multi-modal Spatiotemporal Feature Fusion Network for Precipitation Prediction Digital twin based bearing fault simulation modeling strategy and display dynamics End-to-End Model-Based Gait Recognition with Matching Module Based on Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1