使用无线无电池恶劣环境传感器监测电解电池的温度

P. Aqueveque, A. Morales, Francisco Saavedra, E. Pino, E. Wiechmann
{"title":"使用无线无电池恶劣环境传感器监测电解电池的温度","authors":"P. Aqueveque, A. Morales, Francisco Saavedra, E. Pino, E. Wiechmann","doi":"10.1109/IAS.2016.7731924","DOIUrl":null,"url":null,"abstract":"Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of electrolytic processes is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition integrated to operation and housekeeping procedures, allows enhancing cathode quality and electrodeposition time, better utilization of electrolyte additives, and early identification of temperature excursions and electrolyte flow blockages. These abnormal cell conditions can produce excessive evaporation and energy consumption, anode passivation that impair cathode production in copper electrorefining, or safety issues from the production of flammable hydrogen in copper electrowinning. Therefore, the monitoring of changes in temperature and electrolyte flow can give critical indicators of process deviations and providing early warnings to face the wide variability of performance and safety conditions of cells caused by electrolyte condition mismanagement. This paper proposes a non-invasive wireless sensor for the monitoring of the temperature and electrolyte circulation flow estimation through each cell, suitable to highly-corrosive sulfuric acid environments. The condition monitoring sensor design is small size, lightweight, meets battery-free operation and non-sparking safety requirements. It uses an inductive link-based system for powering and a RF link for communicating. The result is a sensor that surpasses the features of standard instrumentation currently used for electrolytic process monitoring.","PeriodicalId":306377,"journal":{"name":"2016 IEEE Industry Applications Society Annual Meeting","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Temperature monitoring of electrolytic cells using wireless battery-free harsh environment sensors\",\"authors\":\"P. Aqueveque, A. Morales, Francisco Saavedra, E. Pino, E. Wiechmann\",\"doi\":\"10.1109/IAS.2016.7731924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of electrolytic processes is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition integrated to operation and housekeeping procedures, allows enhancing cathode quality and electrodeposition time, better utilization of electrolyte additives, and early identification of temperature excursions and electrolyte flow blockages. These abnormal cell conditions can produce excessive evaporation and energy consumption, anode passivation that impair cathode production in copper electrorefining, or safety issues from the production of flammable hydrogen in copper electrowinning. Therefore, the monitoring of changes in temperature and electrolyte flow can give critical indicators of process deviations and providing early warnings to face the wide variability of performance and safety conditions of cells caused by electrolyte condition mismanagement. This paper proposes a non-invasive wireless sensor for the monitoring of the temperature and electrolyte circulation flow estimation through each cell, suitable to highly-corrosive sulfuric acid environments. The condition monitoring sensor design is small size, lightweight, meets battery-free operation and non-sparking safety requirements. It uses an inductive link-based system for powering and a RF link for communicating. The result is a sensor that surpasses the features of standard instrumentation currently used for electrolytic process monitoring.\",\"PeriodicalId\":306377,\"journal\":{\"name\":\"2016 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2016.7731924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2016.7731924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

适当控制温度和电解液循环流量是电解槽生产致密和高纯度阴极的必要条件。电解过程的电化学动力学本质上依赖于这些电解质变量。持续监测电解液状态集成到操作和管理程序中,可以提高阴极质量和电沉积时间,更好地利用电解液添加剂,并早期识别温度偏差和电解液流动阻塞。这些异常的电池条件会产生过度的蒸发和能量消耗,阳极钝化会影响铜电精炼过程中阴极的生产,或者铜电积过程中产生易燃氢的安全问题。因此,监测温度和电解质流量的变化可以提供工艺偏差的关键指标,并提供早期预警,以面对由于电解质状况管理不当而导致的电池性能和安全状况的广泛变化。本文提出了一种适用于高腐蚀性硫酸环境的无创无线传感器,用于监测每个电池的温度和电解质循环流量估算。状态监测传感器设计体积小,重量轻,满足无电池运行和无火花安全要求。它使用基于感应链路的系统供电,使用射频链路进行通信。其结果是一种传感器,超越了目前用于电解过程监测的标准仪器的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature monitoring of electrolytic cells using wireless battery-free harsh environment sensors
Proper control of temperature and electrolyte circulation flow is mandatory in electrolytic cells to produce dense and high-purity cathodes. The electrochemical kinetics of electrolytic processes is inherently dependent on these electrolyte variables. Continuous monitoring of electrolyte condition integrated to operation and housekeeping procedures, allows enhancing cathode quality and electrodeposition time, better utilization of electrolyte additives, and early identification of temperature excursions and electrolyte flow blockages. These abnormal cell conditions can produce excessive evaporation and energy consumption, anode passivation that impair cathode production in copper electrorefining, or safety issues from the production of flammable hydrogen in copper electrowinning. Therefore, the monitoring of changes in temperature and electrolyte flow can give critical indicators of process deviations and providing early warnings to face the wide variability of performance and safety conditions of cells caused by electrolyte condition mismanagement. This paper proposes a non-invasive wireless sensor for the monitoring of the temperature and electrolyte circulation flow estimation through each cell, suitable to highly-corrosive sulfuric acid environments. The condition monitoring sensor design is small size, lightweight, meets battery-free operation and non-sparking safety requirements. It uses an inductive link-based system for powering and a RF link for communicating. The result is a sensor that surpasses the features of standard instrumentation currently used for electrolytic process monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparative study on D converter based on control schemes of maximum extracted power Efficiency improvement on LLC resonant converter using integrated LCLC resonant transformer Multi-objective methodology to find the optimal forward current to supply light emitting diode (LED) lightings Power flow calculation considering power exchange control for multi-area interconnection power networks A multi-layer optimal chiller operation management framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1