{"title":"工业4.0的时间敏感网络","authors":"T. Leyrer","doi":"10.1109/SOCC.2017.8225980","DOIUrl":null,"url":null,"abstract":"The digital revolution in manufacturing process demand a communication standard which meets the requirements of the manufacturing floor. Additional sensing technology for predictive maintenance add new quality of service requirements to the industrial network. Managing different communication requirements for motion control, programmable logic control and predictive maintenance is the key challenge of applying IEEE Time Sensitive Network (TSN) standard to the trends in industrial automation market.","PeriodicalId":366264,"journal":{"name":"2017 30th IEEE International System-on-Chip Conference (SOCC)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time sensitive networks for industry 4.0\",\"authors\":\"T. Leyrer\",\"doi\":\"10.1109/SOCC.2017.8225980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The digital revolution in manufacturing process demand a communication standard which meets the requirements of the manufacturing floor. Additional sensing technology for predictive maintenance add new quality of service requirements to the industrial network. Managing different communication requirements for motion control, programmable logic control and predictive maintenance is the key challenge of applying IEEE Time Sensitive Network (TSN) standard to the trends in industrial automation market.\",\"PeriodicalId\":366264,\"journal\":{\"name\":\"2017 30th IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 30th IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC.2017.8225980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 30th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2017.8225980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The digital revolution in manufacturing process demand a communication standard which meets the requirements of the manufacturing floor. Additional sensing technology for predictive maintenance add new quality of service requirements to the industrial network. Managing different communication requirements for motion control, programmable logic control and predictive maintenance is the key challenge of applying IEEE Time Sensitive Network (TSN) standard to the trends in industrial automation market.