基于磷化铟、砷化铟镓和锑化铟镓的高效多结太阳能光伏电池

I. Bhattacharya, S. Foo
{"title":"基于磷化铟、砷化铟镓和锑化铟镓的高效多结太阳能光伏电池","authors":"I. Bhattacharya, S. Foo","doi":"10.1109/ASQED.2009.5206262","DOIUrl":null,"url":null,"abstract":"Multijunction solar cells direct sunlight towards matched spectral sensitivity by splitting the spectrum into smaller slices. The main challenge in the photovoltaic industry is to make the modules more cost effective. The high efficiency multijunction photovoltaics have played a very significant role in reducing the cost through concentrator photovoltaic systems being implemented around the world. For example National Renewable Energy Laboratory (NREL) and US Department of Energy (DOE) have funded several III–IV multijunction solar cell projects. In this paper we have introduced a new multijunction photovoltaic cell based upon InP/InGaAs/InGaSb, and performed a comparison of solar energy absorption, reflection and transmission with existing single-junction and multijunction cells being deployed around the world. The inclusion of InGaSb layer in the design has made a significant difference in absorption in the spectral range of 598nm-800nm, contributing to a higher efficiency of the solar cell.","PeriodicalId":437303,"journal":{"name":"2009 1st Asia Symposium on Quality Electronic Design","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Indium phosphide, indium-gallium-arsenide and indium-gallium-antimonide based high efficiency multijunction photovoltaics for solar energy harvesting\",\"authors\":\"I. Bhattacharya, S. Foo\",\"doi\":\"10.1109/ASQED.2009.5206262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multijunction solar cells direct sunlight towards matched spectral sensitivity by splitting the spectrum into smaller slices. The main challenge in the photovoltaic industry is to make the modules more cost effective. The high efficiency multijunction photovoltaics have played a very significant role in reducing the cost through concentrator photovoltaic systems being implemented around the world. For example National Renewable Energy Laboratory (NREL) and US Department of Energy (DOE) have funded several III–IV multijunction solar cell projects. In this paper we have introduced a new multijunction photovoltaic cell based upon InP/InGaAs/InGaSb, and performed a comparison of solar energy absorption, reflection and transmission with existing single-junction and multijunction cells being deployed around the world. The inclusion of InGaSb layer in the design has made a significant difference in absorption in the spectral range of 598nm-800nm, contributing to a higher efficiency of the solar cell.\",\"PeriodicalId\":437303,\"journal\":{\"name\":\"2009 1st Asia Symposium on Quality Electronic Design\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 1st Asia Symposium on Quality Electronic Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASQED.2009.5206262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 1st Asia Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASQED.2009.5206262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

多结太阳能电池通过将光谱分割成更小的片,将阳光直射到匹配的光谱灵敏度。光伏产业面临的主要挑战是使组件更具成本效益。高效的多结光伏在降低聚光光伏系统成本方面发挥了非常重要的作用。例如,国家可再生能源实验室(NREL)和美国能源部(DOE)已经资助了几个III-IV多结太阳能电池项目。本文介绍了一种基于InP/InGaAs/InGaSb的新型多结光伏电池,并与世界上现有的单结和多结电池进行了太阳能吸收、反射和传输的比较。在设计中加入InGaSb层,使得在598nm-800nm光谱范围内的吸收有了显著的差异,有助于提高太阳能电池的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indium phosphide, indium-gallium-arsenide and indium-gallium-antimonide based high efficiency multijunction photovoltaics for solar energy harvesting
Multijunction solar cells direct sunlight towards matched spectral sensitivity by splitting the spectrum into smaller slices. The main challenge in the photovoltaic industry is to make the modules more cost effective. The high efficiency multijunction photovoltaics have played a very significant role in reducing the cost through concentrator photovoltaic systems being implemented around the world. For example National Renewable Energy Laboratory (NREL) and US Department of Energy (DOE) have funded several III–IV multijunction solar cell projects. In this paper we have introduced a new multijunction photovoltaic cell based upon InP/InGaAs/InGaSb, and performed a comparison of solar energy absorption, reflection and transmission with existing single-junction and multijunction cells being deployed around the world. The inclusion of InGaSb layer in the design has made a significant difference in absorption in the spectral range of 598nm-800nm, contributing to a higher efficiency of the solar cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Next generation I/O power delivery design through SIPD co-analysis & comprehensive platform validation Effect of local random variation on gate-level delay and leakage statistical analysis Mutual exploration of FinFET technology and circuit design options for implementing compact brute-force latches Automatic error recovery in targetless logic emulation An automated approach for the diagnosis of multiple faults in FPGA interconnects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1