Faith Gantz, Michael T Wall, M. L. Young, D. Forbes
{"title":"闪蒸退火对富镍NiTi-20合金组织和疲劳寿命的影响。高温形状记忆合金","authors":"Faith Gantz, Michael T Wall, M. L. Young, D. Forbes","doi":"10.31399/asm.cp.smst2022p0097","DOIUrl":null,"url":null,"abstract":"\n Typical processing techniques involve thermo-mechanically treating the material such as cold working and subsequent annealing to control grain and precipitate size, shape, orientation, and morphology. Shape memory alloy (SMA) mechanical properties rely heavily on microstructural features such as precipitates and grain size to extend fatigue life. Novel approaches to control microstructural features have used laser anneal on amorphous NiTi thin films to recrystallize grains and short-time annealing on NiTi after angular extrusion and cold-drawn fine wires. A recent study examined rapid thermal annealing (RTA) on Ni-lean NiTi- 10 at.% Hf wires as an effective method for controlling grain size and extending actuation fatigue; however, flash annealing or RTA on Ni-rich NiTiHf high-temperature SMA (HTMSA) wires has not been investigated. Based on a larger study, Ni-rich NiTi-20 at.% Hf HTSMA was down-selected for further processing. This study investigates the effect of flash annealing on the thermo-mechanical properties of a Ni-rich Ni50.3Ti29.7Hf20 HTSMA. Microstructural changes were examined using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Actuation fatigue properties were also evaluated at 300 MPa. The results indicate that flash annealing HTSMA wires is an effective method for controlling grain size and extending fatigue life. The heating rate and time held are crucial parameters to control microstructural features such as grain size and coherency.","PeriodicalId":119283,"journal":{"name":"SMST 2022: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Flash Annealing on the Microstructure and Fatigue Life of a Ni-rich NiTi-20 at.% Hf High Temperature Shape Memory Alloy\",\"authors\":\"Faith Gantz, Michael T Wall, M. L. Young, D. Forbes\",\"doi\":\"10.31399/asm.cp.smst2022p0097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Typical processing techniques involve thermo-mechanically treating the material such as cold working and subsequent annealing to control grain and precipitate size, shape, orientation, and morphology. Shape memory alloy (SMA) mechanical properties rely heavily on microstructural features such as precipitates and grain size to extend fatigue life. Novel approaches to control microstructural features have used laser anneal on amorphous NiTi thin films to recrystallize grains and short-time annealing on NiTi after angular extrusion and cold-drawn fine wires. A recent study examined rapid thermal annealing (RTA) on Ni-lean NiTi- 10 at.% Hf wires as an effective method for controlling grain size and extending actuation fatigue; however, flash annealing or RTA on Ni-rich NiTiHf high-temperature SMA (HTMSA) wires has not been investigated. Based on a larger study, Ni-rich NiTi-20 at.% Hf HTSMA was down-selected for further processing. This study investigates the effect of flash annealing on the thermo-mechanical properties of a Ni-rich Ni50.3Ti29.7Hf20 HTSMA. Microstructural changes were examined using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Actuation fatigue properties were also evaluated at 300 MPa. The results indicate that flash annealing HTSMA wires is an effective method for controlling grain size and extending fatigue life. The heating rate and time held are crucial parameters to control microstructural features such as grain size and coherency.\",\"PeriodicalId\":119283,\"journal\":{\"name\":\"SMST 2022: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SMST 2022: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.smst2022p0097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMST 2022: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.smst2022p0097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Flash Annealing on the Microstructure and Fatigue Life of a Ni-rich NiTi-20 at.% Hf High Temperature Shape Memory Alloy
Typical processing techniques involve thermo-mechanically treating the material such as cold working and subsequent annealing to control grain and precipitate size, shape, orientation, and morphology. Shape memory alloy (SMA) mechanical properties rely heavily on microstructural features such as precipitates and grain size to extend fatigue life. Novel approaches to control microstructural features have used laser anneal on amorphous NiTi thin films to recrystallize grains and short-time annealing on NiTi after angular extrusion and cold-drawn fine wires. A recent study examined rapid thermal annealing (RTA) on Ni-lean NiTi- 10 at.% Hf wires as an effective method for controlling grain size and extending actuation fatigue; however, flash annealing or RTA on Ni-rich NiTiHf high-temperature SMA (HTMSA) wires has not been investigated. Based on a larger study, Ni-rich NiTi-20 at.% Hf HTSMA was down-selected for further processing. This study investigates the effect of flash annealing on the thermo-mechanical properties of a Ni-rich Ni50.3Ti29.7Hf20 HTSMA. Microstructural changes were examined using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Actuation fatigue properties were also evaluated at 300 MPa. The results indicate that flash annealing HTSMA wires is an effective method for controlling grain size and extending fatigue life. The heating rate and time held are crucial parameters to control microstructural features such as grain size and coherency.