{"title":"用神经网络学习矩阵奇异值","authors":"Derek Xu, William Shiao, Jia Chen, E. Papalexakis","doi":"10.1109/ICDMW58026.2022.00039","DOIUrl":null,"url":null,"abstract":"The singular value decomposition (SVD) factors a matrix into three separate matrices: two (semi-)unitary matrices whose columns are left/right singular vectors and one diagonal matrix whose diagonal entries are singular values. Typically, performing SVD on big matrices is taxing due to its compu-tational complexity in the cubic order of its dimensions. With the advances and rapid growth of deep learning techniques in a broad spectrum of applications, a fundamental question arises: can deep neural networks learn the singular values of a matrix? To answer this question, we propose a novel algorithm, namely SV-Iearn, to predict the singular values of a given input matrix by leveraging the advances of neural networks. Numerical results demonstrate that our proposed method outperforms the competing alternatives in terms of achieving lower normalized mean square error on singular value prediction when using real-world datasets. Further, the predicted singular values combined with singular vectors of an input data allow us to reconstruct the input matrices with promising performance.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SV-Learn: Learning Matrix Singular Values with Neural Networks\",\"authors\":\"Derek Xu, William Shiao, Jia Chen, E. Papalexakis\",\"doi\":\"10.1109/ICDMW58026.2022.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The singular value decomposition (SVD) factors a matrix into three separate matrices: two (semi-)unitary matrices whose columns are left/right singular vectors and one diagonal matrix whose diagonal entries are singular values. Typically, performing SVD on big matrices is taxing due to its compu-tational complexity in the cubic order of its dimensions. With the advances and rapid growth of deep learning techniques in a broad spectrum of applications, a fundamental question arises: can deep neural networks learn the singular values of a matrix? To answer this question, we propose a novel algorithm, namely SV-Iearn, to predict the singular values of a given input matrix by leveraging the advances of neural networks. Numerical results demonstrate that our proposed method outperforms the competing alternatives in terms of achieving lower normalized mean square error on singular value prediction when using real-world datasets. Further, the predicted singular values combined with singular vectors of an input data allow us to reconstruct the input matrices with promising performance.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SV-Learn: Learning Matrix Singular Values with Neural Networks
The singular value decomposition (SVD) factors a matrix into three separate matrices: two (semi-)unitary matrices whose columns are left/right singular vectors and one diagonal matrix whose diagonal entries are singular values. Typically, performing SVD on big matrices is taxing due to its compu-tational complexity in the cubic order of its dimensions. With the advances and rapid growth of deep learning techniques in a broad spectrum of applications, a fundamental question arises: can deep neural networks learn the singular values of a matrix? To answer this question, we propose a novel algorithm, namely SV-Iearn, to predict the singular values of a given input matrix by leveraging the advances of neural networks. Numerical results demonstrate that our proposed method outperforms the competing alternatives in terms of achieving lower normalized mean square error on singular value prediction when using real-world datasets. Further, the predicted singular values combined with singular vectors of an input data allow us to reconstruct the input matrices with promising performance.