形状优化网格壳结构的多体绳寻形方法

A. Manuello, J. Melchiorre, L. Sardone, G. Marano
{"title":"形状优化网格壳结构的多体绳寻形方法","authors":"A. Manuello, J. Melchiorre, L. Sardone, G. Marano","doi":"10.23967/wccm-apcom.2022.075","DOIUrl":null,"url":null,"abstract":". Over the past decades, different approaches, physical and geometrical, were implemented to identify the optimal shape, reducing the internal stresses, of grid shells and vaults. As far as their original organic shape is concerned, the design of grid shell structures inspired architects and structural engineers worldwide and in any time. The method, here presented, is developed and extended, from its original formulation, employing a self-made code based on the dynamic equilibrium, ensured by the d'Alembert principle, of masses interconnected by rope elements in the space-time domain. The equilibrium corresponding the optimized shape to be defined, is obtained through an iterative process in the falling masses connected by a net for the definition of the \"catenary surface\" coinciding with the best shape of the shell (form minimizing the bending moment) according to the conditions of zero velocities and accelerations of the nodes. The implementation of the method is realized in MATLAB and set up for Python in an interpreted high-level general-purpose programming language. By the use of this code as well as its object-oriented architecture the MRA Python code will be linked to the Grasshopper environment for the direct visualization of the shapes and their fast-parametrization phase.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-body Rope Approach for the Form-Finding of Shape Optimized Grid Shell Structures\",\"authors\":\"A. Manuello, J. Melchiorre, L. Sardone, G. Marano\",\"doi\":\"10.23967/wccm-apcom.2022.075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Over the past decades, different approaches, physical and geometrical, were implemented to identify the optimal shape, reducing the internal stresses, of grid shells and vaults. As far as their original organic shape is concerned, the design of grid shell structures inspired architects and structural engineers worldwide and in any time. The method, here presented, is developed and extended, from its original formulation, employing a self-made code based on the dynamic equilibrium, ensured by the d'Alembert principle, of masses interconnected by rope elements in the space-time domain. The equilibrium corresponding the optimized shape to be defined, is obtained through an iterative process in the falling masses connected by a net for the definition of the \\\"catenary surface\\\" coinciding with the best shape of the shell (form minimizing the bending moment) according to the conditions of zero velocities and accelerations of the nodes. The implementation of the method is realized in MATLAB and set up for Python in an interpreted high-level general-purpose programming language. By the use of this code as well as its object-oriented architecture the MRA Python code will be linked to the Grasshopper environment for the direct visualization of the shapes and their fast-parametrization phase.\",\"PeriodicalId\":429847,\"journal\":{\"name\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/wccm-apcom.2022.075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 在过去的几十年里,人们采用了不同的物理和几何方法来确定网格壳和拱顶的最佳形状,减少内应力。就其原始的有机形状而言,网格壳结构的设计启发了世界各地的建筑师和结构工程师。本文提出的方法是在原来的基础上发展和扩展的,采用了一种基于时空域绳单元相互连接的质量的动态平衡的自制代码,该代码由达朗贝尔原理保证。在节点速度和加速度为零的条件下,在定义与壳体最佳形状(弯矩最小的形状)一致的“悬链线面”的下落质量网中,通过迭代过程得到所要定义的最优形状对应的平衡。该方法的实现是在MATLAB中实现的,并以解释性高级通用编程语言Python编写。通过使用此代码及其面向对象的体系结构,MRA Python代码将链接到Grasshopper环境,以直接可视化形状及其快速参数化阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-body Rope Approach for the Form-Finding of Shape Optimized Grid Shell Structures
. Over the past decades, different approaches, physical and geometrical, were implemented to identify the optimal shape, reducing the internal stresses, of grid shells and vaults. As far as their original organic shape is concerned, the design of grid shell structures inspired architects and structural engineers worldwide and in any time. The method, here presented, is developed and extended, from its original formulation, employing a self-made code based on the dynamic equilibrium, ensured by the d'Alembert principle, of masses interconnected by rope elements in the space-time domain. The equilibrium corresponding the optimized shape to be defined, is obtained through an iterative process in the falling masses connected by a net for the definition of the "catenary surface" coinciding with the best shape of the shell (form minimizing the bending moment) according to the conditions of zero velocities and accelerations of the nodes. The implementation of the method is realized in MATLAB and set up for Python in an interpreted high-level general-purpose programming language. By the use of this code as well as its object-oriented architecture the MRA Python code will be linked to the Grasshopper environment for the direct visualization of the shapes and their fast-parametrization phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forensic Evaluation of Historic Shell Structure: Development of In-Situ Geometry New calculation scheme for compressible Euler equation Numerical study on the hydrate-rich sediment behaviour during depressurization Wind Pressure Characteristics of High-rise buildings in Middle and High-height Urban Areas Spread over Local Terrain Out of Plane Lower Bound Limit Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1