用TDR法验证装配负载板的走线长度和走线阻抗

S.M. Low, M. Phoon, A. Suffian, Johan
{"title":"用TDR法验证装配负载板的走线长度和走线阻抗","authors":"S.M. Low, M. Phoon, A. Suffian, Johan","doi":"10.1109/ASQED.2009.5206229","DOIUrl":null,"url":null,"abstract":"In the realm of high speed semiconductor IC testing, the medium whereby the test signals passed has important role in order to ensure that the signal transmitted and received are the correct signals. One of the media that the signal passed in IC testing is the device interface board or load board in short. Load board is basically a printed circuit board with test socket(s) for inserting device under test (DUT) during the testing. It consists of numerous conductive traces connecting the DUT to the tester. They are carefully designed according to impedance design and control for the task they have to perform for the specific semiconductor devices. Once they are fabricated it is not possible to physically measure the trace length and impedance to validate their correctness since the traces are built internally. TDR has recently been used in the semiconductor industry for transmission line characterization and signal integrity analysis. TDR method was used successfully in this study to verify the trace length and impedance of the fabricated load board used for semiconductor's speed testing. The trace length of the evaluation load board was verified to within 8% accuracy. The trace impedance was measured to be 48 ohms which is very close to the theoretical value of 50 ohm. Thus the TDR method served as an useful tool for verification of the trace length and trace impedance of the load board.","PeriodicalId":437303,"journal":{"name":"2009 1st Asia Symposium on Quality Electronic Design","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of trace length and trace impedance of fabricated load board using TDR\",\"authors\":\"S.M. Low, M. Phoon, A. Suffian, Johan\",\"doi\":\"10.1109/ASQED.2009.5206229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of high speed semiconductor IC testing, the medium whereby the test signals passed has important role in order to ensure that the signal transmitted and received are the correct signals. One of the media that the signal passed in IC testing is the device interface board or load board in short. Load board is basically a printed circuit board with test socket(s) for inserting device under test (DUT) during the testing. It consists of numerous conductive traces connecting the DUT to the tester. They are carefully designed according to impedance design and control for the task they have to perform for the specific semiconductor devices. Once they are fabricated it is not possible to physically measure the trace length and impedance to validate their correctness since the traces are built internally. TDR has recently been used in the semiconductor industry for transmission line characterization and signal integrity analysis. TDR method was used successfully in this study to verify the trace length and impedance of the fabricated load board used for semiconductor's speed testing. The trace length of the evaluation load board was verified to within 8% accuracy. The trace impedance was measured to be 48 ohms which is very close to the theoretical value of 50 ohm. Thus the TDR method served as an useful tool for verification of the trace length and trace impedance of the load board.\",\"PeriodicalId\":437303,\"journal\":{\"name\":\"2009 1st Asia Symposium on Quality Electronic Design\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 1st Asia Symposium on Quality Electronic Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASQED.2009.5206229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 1st Asia Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASQED.2009.5206229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高速半导体集成电路测试领域中,为了保证发送和接收的信号是正确的信号,测试信号所通过的介质起着重要的作用。在集成电路测试中,信号通过的介质之一是设备接口板或负载板。负载板基本上是带有测试插座的印刷电路板,用于在测试期间插入被测设备(DUT)。它由连接被测设备和测试仪的许多导电走线组成。它们是根据阻抗设计和控制精心设计的,以执行特定半导体器件的任务。一旦它们被制造出来,就不可能物理测量走线长度和阻抗来验证它们的正确性,因为走线是在内部构建的。TDR最近在半导体工业中用于传输线表征和信号完整性分析。采用TDR法对半导体速度测试用负载板的走线长度和阻抗进行了验证。经验证,评估载荷板的轨迹长度精度在8%以内。测得的走线阻抗为48欧姆,与理论值50欧姆非常接近。因此,TDR方法作为验证负载板的走线长度和走线阻抗的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verification of trace length and trace impedance of fabricated load board using TDR
In the realm of high speed semiconductor IC testing, the medium whereby the test signals passed has important role in order to ensure that the signal transmitted and received are the correct signals. One of the media that the signal passed in IC testing is the device interface board or load board in short. Load board is basically a printed circuit board with test socket(s) for inserting device under test (DUT) during the testing. It consists of numerous conductive traces connecting the DUT to the tester. They are carefully designed according to impedance design and control for the task they have to perform for the specific semiconductor devices. Once they are fabricated it is not possible to physically measure the trace length and impedance to validate their correctness since the traces are built internally. TDR has recently been used in the semiconductor industry for transmission line characterization and signal integrity analysis. TDR method was used successfully in this study to verify the trace length and impedance of the fabricated load board used for semiconductor's speed testing. The trace length of the evaluation load board was verified to within 8% accuracy. The trace impedance was measured to be 48 ohms which is very close to the theoretical value of 50 ohm. Thus the TDR method served as an useful tool for verification of the trace length and trace impedance of the load board.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Next generation I/O power delivery design through SIPD co-analysis & comprehensive platform validation Effect of local random variation on gate-level delay and leakage statistical analysis Mutual exploration of FinFET technology and circuit design options for implementing compact brute-force latches Automatic error recovery in targetless logic emulation An automated approach for the diagnosis of multiple faults in FPGA interconnects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1