编译通用直方图的GPU

Troels Henriksen, Sune Hellfritzsch, P. Sadayappan, C. Oancea
{"title":"编译通用直方图的GPU","authors":"Troels Henriksen, Sune Hellfritzsch, P. Sadayappan, C. Oancea","doi":"10.1109/SC41405.2020.00101","DOIUrl":null,"url":null,"abstract":"We present and evaluate an implementation technique for histogram-like computations on GPUs that ensures both work-efficient asymptotic cost, support for arbitrary associative and commutative operators, and efficient use of hardwaresupported atomic operations when applicable. Based on a systematic empirical examination of the design space, we develop a technique that balances conflict rates and memory footprint. We demonstrate our technique both as a library implementation in CUDA, as well as by extending the parallel array language Futhark with a new construct for expressing generalized histograms, and by supporting this construct with several compiler optimizations. We show that our histogram implementation taken in isolation outperforms similar primitives from CUB, and that it is competitive or outperforms the hand-written code of several application benchmarks, even when the latter is specialized for a class of datasets.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Compiling Generalized Histograms for GPU\",\"authors\":\"Troels Henriksen, Sune Hellfritzsch, P. Sadayappan, C. Oancea\",\"doi\":\"10.1109/SC41405.2020.00101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present and evaluate an implementation technique for histogram-like computations on GPUs that ensures both work-efficient asymptotic cost, support for arbitrary associative and commutative operators, and efficient use of hardwaresupported atomic operations when applicable. Based on a systematic empirical examination of the design space, we develop a technique that balances conflict rates and memory footprint. We demonstrate our technique both as a library implementation in CUDA, as well as by extending the parallel array language Futhark with a new construct for expressing generalized histograms, and by supporting this construct with several compiler optimizations. We show that our histogram implementation taken in isolation outperforms similar primitives from CUB, and that it is competitive or outperforms the hand-written code of several application benchmarks, even when the latter is specialized for a class of datasets.\",\"PeriodicalId\":424429,\"journal\":{\"name\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC41405.2020.00101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出并评估了一种在gpu上实现类似直方图计算的技术,该技术确保了高效的渐近成本,支持任意关联和交换运算符,并在适用时有效地使用硬件支持的原子操作。基于对设计空间的系统经验检查,我们开发了一种平衡冲突率和内存占用的技术。我们演示了我们的技术作为CUDA中的库实现,以及通过扩展并行数组语言Futhark的新结构来表达广义直方图,并通过几个编译器优化来支持该结构。我们展示了单独使用的直方图实现优于CUB中的类似原语,并且可以与几个应用程序基准测试的手写代码竞争或优于它们,即使后者专门用于一类数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compiling Generalized Histograms for GPU
We present and evaluate an implementation technique for histogram-like computations on GPUs that ensures both work-efficient asymptotic cost, support for arbitrary associative and commutative operators, and efficient use of hardwaresupported atomic operations when applicable. Based on a systematic empirical examination of the design space, we develop a technique that balances conflict rates and memory footprint. We demonstrate our technique both as a library implementation in CUDA, as well as by extending the parallel array language Futhark with a new construct for expressing generalized histograms, and by supporting this construct with several compiler optimizations. We show that our histogram implementation taken in isolation outperforms similar primitives from CUB, and that it is competitive or outperforms the hand-written code of several application benchmarks, even when the latter is specialized for a class of datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1