基于多准则优化深度学习的汽车以太网入侵检测系统

Luigi F. Marques da Luz, Paulo Freitas de Araujo-Filho, Divanilson R. Campelo
{"title":"基于多准则优化深度学习的汽车以太网入侵检测系统","authors":"Luigi F. Marques da Luz, Paulo Freitas de Araujo-Filho, Divanilson R. Campelo","doi":"10.5753/sbrc.2023.527","DOIUrl":null,"url":null,"abstract":"Connected and autonomous vehicles (CAVs) are part of the Internet of Things, exposing them to cyberattacks. CAVs comprise several systems, such as advanced driver assistance systems, that require high bandwidth for critical data transmission, where automotive Ethernet plays an essential role as an enabling technology. In this paper, we propose a deep learning-based intrusion detection system for detecting replay attacks in an automotive Ethernet network. It uses a convolutional neural network architecture and a multi-criteria optimization technique. Our experimental results show a reduction of 900x in the storage size and a speedup of 1.4x in the detection time with a negligible drop in the F1-score compared to existing work.","PeriodicalId":254689,"journal":{"name":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Criteria Optimized Deep Learning-based Intrusion Detection System for Detecting Cyberattacks in Automotive Ethernet Networks\",\"authors\":\"Luigi F. Marques da Luz, Paulo Freitas de Araujo-Filho, Divanilson R. Campelo\",\"doi\":\"10.5753/sbrc.2023.527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Connected and autonomous vehicles (CAVs) are part of the Internet of Things, exposing them to cyberattacks. CAVs comprise several systems, such as advanced driver assistance systems, that require high bandwidth for critical data transmission, where automotive Ethernet plays an essential role as an enabling technology. In this paper, we propose a deep learning-based intrusion detection system for detecting replay attacks in an automotive Ethernet network. It uses a convolutional neural network architecture and a multi-criteria optimization technique. Our experimental results show a reduction of 900x in the storage size and a speedup of 1.4x in the detection time with a negligible drop in the F1-score compared to existing work.\",\"PeriodicalId\":254689,\"journal\":{\"name\":\"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbrc.2023.527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbrc.2023.527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联网和自动驾驶汽车(cav)是物联网的一部分,使它们容易受到网络攻击。自动驾驶汽车包括多个系统,如高级驾驶员辅助系统,这些系统需要高带宽来进行关键数据传输,其中汽车以太网作为使能技术起着至关重要的作用。在本文中,我们提出了一个基于深度学习的入侵检测系统,用于检测汽车以太网中的重放攻击。它采用卷积神经网络架构和多准则优化技术。我们的实验结果表明,与现有工作相比,存储大小减少了900倍,检测时间加快了1.4倍,f1分数的下降可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Criteria Optimized Deep Learning-based Intrusion Detection System for Detecting Cyberattacks in Automotive Ethernet Networks
Connected and autonomous vehicles (CAVs) are part of the Internet of Things, exposing them to cyberattacks. CAVs comprise several systems, such as advanced driver assistance systems, that require high bandwidth for critical data transmission, where automotive Ethernet plays an essential role as an enabling technology. In this paper, we propose a deep learning-based intrusion detection system for detecting replay attacks in an automotive Ethernet network. It uses a convolutional neural network architecture and a multi-criteria optimization technique. Our experimental results show a reduction of 900x in the storage size and a speedup of 1.4x in the detection time with a negligible drop in the F1-score compared to existing work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Telemetria Adaptativa Usando Aprendizado por Reforço Profundo em Redes Definidas por Software Heurística Escalável Para o Problema de Alocação de vBBU e Comprimento de Onda em Cloud-Fog RAN Autoencoders Assimétricos para a Compressão de Dados IoT Caracterização das vulnerabilidades dos roteadores Wi-Fi no mercado brasileiro Gaming On The Edge: Uma arquitetura de computação na borda para jogos em dispositivos móveis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1