通过重采样减少混叠现象

A. Reshetov
{"title":"通过重采样减少混叠现象","authors":"A. Reshetov","doi":"10.2312/EGGH/HPG12/077-086","DOIUrl":null,"url":null,"abstract":"Post-processing antialiasing methods are well suited for deferred shading because they decouple antialiasing from the rest of graphics pipeline. In morphological methods, the final image is filtered with a data-dependent filter. The filter coefficients are computed by analyzing the non-local neighborhood of each pixel. Though very simple and efficient, such methods have intrinsic quality limitations due to spatial undersampling and temporal aliasing. We explore an alternative formulation in which filter coefficients are computed locally for each pixel by supersampling geometry, while shading is still done only once per pixel.\n During pre-processing, each geometric subsample is converted to a single bit indicating whether the subsample is different from the central one. The ensuing binary mask is then used in the post-processing step to retrieve filter coefficients, which were precomputed for all possible masks. For a typical 8 subsamples, it results in a sub-millisecond performance, while improving the image quality by about 10 dB.\n To compare subsamples, we use a novel symmetric angular measure, which has a simple geometric interpretation. We propose to use this measure in a variety of applications that assess the difference between geometric samples (rendering, mesh simplification, geometry encoding, adaptive tessellation).","PeriodicalId":294868,"journal":{"name":"EGGH-HPG'12","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Reducing aliasing artifacts through resampling\",\"authors\":\"A. Reshetov\",\"doi\":\"10.2312/EGGH/HPG12/077-086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Post-processing antialiasing methods are well suited for deferred shading because they decouple antialiasing from the rest of graphics pipeline. In morphological methods, the final image is filtered with a data-dependent filter. The filter coefficients are computed by analyzing the non-local neighborhood of each pixel. Though very simple and efficient, such methods have intrinsic quality limitations due to spatial undersampling and temporal aliasing. We explore an alternative formulation in which filter coefficients are computed locally for each pixel by supersampling geometry, while shading is still done only once per pixel.\\n During pre-processing, each geometric subsample is converted to a single bit indicating whether the subsample is different from the central one. The ensuing binary mask is then used in the post-processing step to retrieve filter coefficients, which were precomputed for all possible masks. For a typical 8 subsamples, it results in a sub-millisecond performance, while improving the image quality by about 10 dB.\\n To compare subsamples, we use a novel symmetric angular measure, which has a simple geometric interpretation. We propose to use this measure in a variety of applications that assess the difference between geometric samples (rendering, mesh simplification, geometry encoding, adaptive tessellation).\",\"PeriodicalId\":294868,\"journal\":{\"name\":\"EGGH-HPG'12\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EGGH-HPG'12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/EGGH/HPG12/077-086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EGGH-HPG'12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGGH/HPG12/077-086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

后处理抗锯齿方法非常适合延迟着色,因为它们将抗锯齿与其他图形管道解耦。在形态学方法中,使用数据相关滤波器对最终图像进行过滤。通过分析每个像素的非局部邻域来计算滤波系数。这种方法虽然简单有效,但由于空间欠采样和时间混叠,存在固有的质量限制。我们探索了一种替代公式,其中过滤器系数通过超采样几何图形局部计算每个像素,而遮阳仍然只做一次每像素。在预处理过程中,将每个几何子样本转换为单个比特,表明该子样本是否与中心子样本不同。然后在后处理步骤中使用随后的二进制掩码来检索滤波器系数,这些系数是为所有可能的掩码预先计算的。对于典型的8个子样本,它会导致亚毫秒级的性能,同时将图像质量提高约10 dB。为了比较子样本,我们使用了一种新的对称角度量,它具有简单的几何解释。我们建议在各种评估几何样本(渲染、网格简化、几何编码、自适应镶嵌)之间差异的应用中使用这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing aliasing artifacts through resampling
Post-processing antialiasing methods are well suited for deferred shading because they decouple antialiasing from the rest of graphics pipeline. In morphological methods, the final image is filtered with a data-dependent filter. The filter coefficients are computed by analyzing the non-local neighborhood of each pixel. Though very simple and efficient, such methods have intrinsic quality limitations due to spatial undersampling and temporal aliasing. We explore an alternative formulation in which filter coefficients are computed locally for each pixel by supersampling geometry, while shading is still done only once per pixel. During pre-processing, each geometric subsample is converted to a single bit indicating whether the subsample is different from the central one. The ensuing binary mask is then used in the post-processing step to retrieve filter coefficients, which were precomputed for all possible masks. For a typical 8 subsamples, it results in a sub-millisecond performance, while improving the image quality by about 10 dB. To compare subsamples, we use a novel symmetric angular measure, which has a simple geometric interpretation. We propose to use this measure in a variety of applications that assess the difference between geometric samples (rendering, mesh simplification, geometry encoding, adaptive tessellation).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithm and VLSI architecture for real-time 1080p60 video retargeting Maximizing parallelism in the construction of BVHs, octrees, and k-d trees kANN on the GPU with shifted sorting Reducing aliasing artifacts through resampling Design and novel uses of higher-dimensional rasterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1