LoRaDRL:基于深度强化学习的LoRaWAN物理层自适应传输参数选择

Inaam Ilahi, M. Usama, M. Farooq, M. Janjua, Junaid Qadir
{"title":"LoRaDRL:基于深度强化学习的LoRaWAN物理层自适应传输参数选择","authors":"Inaam Ilahi, M. Usama, M. Farooq, M. Janjua, Junaid Qadir","doi":"10.1109/LCN48667.2020.9314772","DOIUrl":null,"url":null,"abstract":"The performance of densely-deployed low-power wide-area networks (LPWANs) can significantly deteriorate due to packets collisions, and one of the main reasons for that is the rule-based PHY layer transmission parameters assignment algorithms. LoRaWAN is a leading LPWAN technology where LoRa serves as the physical layer. Here, we propose and evaluate a deep reinforcement learning (DRL)-based PHY layer transmission parameter assignment algorithm for LoRaWAN. Our algorithm ensures fewer collisions and better network performance compared to the existing state-of-the-art PHY layer transmission parameter assignment algorithms for LoRaWAN. Our algorithm outperforms the state of the art learning-based technique achieving up to 500% improvement of PDR in some cases.","PeriodicalId":245782,"journal":{"name":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"LoRaDRL: Deep Reinforcement Learning Based Adaptive PHY Layer Transmission Parameters Selection for LoRaWAN\",\"authors\":\"Inaam Ilahi, M. Usama, M. Farooq, M. Janjua, Junaid Qadir\",\"doi\":\"10.1109/LCN48667.2020.9314772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of densely-deployed low-power wide-area networks (LPWANs) can significantly deteriorate due to packets collisions, and one of the main reasons for that is the rule-based PHY layer transmission parameters assignment algorithms. LoRaWAN is a leading LPWAN technology where LoRa serves as the physical layer. Here, we propose and evaluate a deep reinforcement learning (DRL)-based PHY layer transmission parameter assignment algorithm for LoRaWAN. Our algorithm ensures fewer collisions and better network performance compared to the existing state-of-the-art PHY layer transmission parameter assignment algorithms for LoRaWAN. Our algorithm outperforms the state of the art learning-based technique achieving up to 500% improvement of PDR in some cases.\",\"PeriodicalId\":245782,\"journal\":{\"name\":\"2020 IEEE 45th Conference on Local Computer Networks (LCN)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 45th Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN48667.2020.9314772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN48667.2020.9314772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

密集部署的低功耗广域网(lpwan)的性能会因分组冲突而显著下降,其主要原因之一是基于规则的物理层传输参数分配算法。LoRaWAN是一种领先的LPWAN技术,其中LoRa充当物理层。在此,我们提出并评估了一种基于深度强化学习(DRL)的LoRaWAN物理层传输参数分配算法。与现有的LoRaWAN最先进的物理层传输参数分配算法相比,我们的算法确保了更少的冲突和更好的网络性能。我们的算法优于目前基于学习的技术,在某些情况下实现了500%的PDR改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LoRaDRL: Deep Reinforcement Learning Based Adaptive PHY Layer Transmission Parameters Selection for LoRaWAN
The performance of densely-deployed low-power wide-area networks (LPWANs) can significantly deteriorate due to packets collisions, and one of the main reasons for that is the rule-based PHY layer transmission parameters assignment algorithms. LoRaWAN is a leading LPWAN technology where LoRa serves as the physical layer. Here, we propose and evaluate a deep reinforcement learning (DRL)-based PHY layer transmission parameter assignment algorithm for LoRaWAN. Our algorithm ensures fewer collisions and better network performance compared to the existing state-of-the-art PHY layer transmission parameter assignment algorithms for LoRaWAN. Our algorithm outperforms the state of the art learning-based technique achieving up to 500% improvement of PDR in some cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging MEC in a 5G System for Enhanced Back Situation Awareness L3SFA: Load Shifting Strategy for Spreading Factor Allocation in LoRaWAN Systems PLEDGE: An IoT-oriented Proof-of-Honesty based Blockchain Consensus Protocol Don’t Stop at the Top: Using Certificate Transparency Logs to Extend Domain Lists for Web Security Studies SETA: Scalable Encrypted Traffic Analytics in Multi-Gbps Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1