{"title":"集成聚合物波导的高性能计算平台的多物理仿真","authors":"T. Bechtold, D. Hohlfeld","doi":"10.1109/EUROSIME.2016.7463327","DOIUrl":null,"url":null,"abstract":"This work presents a general simulation approach for all relevant physical effects in electro-optical circuit boards. Such printed circuit boards integrate electrical components and connections together with optical wave-guides as signal lines for applications in data transmission and sensing. The proposed modelling approach includes a calculation of heat distribution based on convective cooling and the thermally induced mechanical stress. We also present results on mode shapes within straight and uniformly curved waveguides as well as a consideration of ray tracing.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-physical simulation of high performance computing platform integrating polymer waveguides\",\"authors\":\"T. Bechtold, D. Hohlfeld\",\"doi\":\"10.1109/EUROSIME.2016.7463327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a general simulation approach for all relevant physical effects in electro-optical circuit boards. Such printed circuit boards integrate electrical components and connections together with optical wave-guides as signal lines for applications in data transmission and sensing. The proposed modelling approach includes a calculation of heat distribution based on convective cooling and the thermally induced mechanical stress. We also present results on mode shapes within straight and uniformly curved waveguides as well as a consideration of ray tracing.\",\"PeriodicalId\":438097,\"journal\":{\"name\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2016.7463327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-physical simulation of high performance computing platform integrating polymer waveguides
This work presents a general simulation approach for all relevant physical effects in electro-optical circuit boards. Such printed circuit boards integrate electrical components and connections together with optical wave-guides as signal lines for applications in data transmission and sensing. The proposed modelling approach includes a calculation of heat distribution based on convective cooling and the thermally induced mechanical stress. We also present results on mode shapes within straight and uniformly curved waveguides as well as a consideration of ray tracing.