记忆阵列上神经形态序列学习的演示

Sebastian Siegel, Tobias Ziegler, Younes Bouhadjar, T. Tetzlaff, R. Waser, R. Dittmann, D. Wouters
{"title":"记忆阵列上神经形态序列学习的演示","authors":"Sebastian Siegel, Tobias Ziegler, Younes Bouhadjar, T. Tetzlaff, R. Waser, R. Dittmann, D. Wouters","doi":"10.1145/3584954.3585000","DOIUrl":null,"url":null,"abstract":"Sequence learning and prediction are considered principle computations performed by biological brains. Machine learning algorithms solve this type of task, but they require large amounts of training data and a substantial energy budget. An approach to overcome these issues and enable sequence learning with brain-like performance is neuromorphic hardware with brain-inspired learning algorithms. The Hierarchical Temporal Memory (HTM) is an algorithm inspired by the working principles of the neocortex and is able to learn and predict continuous sequences of elements. In a previous study, we showed that memristive devices, an emerging non-volatile memory technology, that is considered for energy efficient neuromorphic hardware, can be used as synapses in a biologically plausible version of the temporal memory algorithm of the HTM model. We subsequently presented a simulation study of an analog-mixed signal memristive hardware architecture that can implement the temporal learning algorithm. This architecture, which we refer to as MemSpikingTM, is based on a memristive crossbar array and a control circuitry implementing the neurons and the learning mechanism. In the study presented here, we demonstrate the functionality of the MemSpikingTM algorithm on a real memristive crossbar array, taped out in a commercially available 130nm CMOS technology node co-integrated with HfO based memristive devices. We explain the algorithm and the functionality of the crossbar array and peripheral circuitry and finally demonstrate context-dependent sequence learning using high-order sequences.","PeriodicalId":375527,"journal":{"name":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Demonstration of neuromorphic sequence learning on a memristive array\",\"authors\":\"Sebastian Siegel, Tobias Ziegler, Younes Bouhadjar, T. Tetzlaff, R. Waser, R. Dittmann, D. Wouters\",\"doi\":\"10.1145/3584954.3585000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequence learning and prediction are considered principle computations performed by biological brains. Machine learning algorithms solve this type of task, but they require large amounts of training data and a substantial energy budget. An approach to overcome these issues and enable sequence learning with brain-like performance is neuromorphic hardware with brain-inspired learning algorithms. The Hierarchical Temporal Memory (HTM) is an algorithm inspired by the working principles of the neocortex and is able to learn and predict continuous sequences of elements. In a previous study, we showed that memristive devices, an emerging non-volatile memory technology, that is considered for energy efficient neuromorphic hardware, can be used as synapses in a biologically plausible version of the temporal memory algorithm of the HTM model. We subsequently presented a simulation study of an analog-mixed signal memristive hardware architecture that can implement the temporal learning algorithm. This architecture, which we refer to as MemSpikingTM, is based on a memristive crossbar array and a control circuitry implementing the neurons and the learning mechanism. In the study presented here, we demonstrate the functionality of the MemSpikingTM algorithm on a real memristive crossbar array, taped out in a commercially available 130nm CMOS technology node co-integrated with HfO based memristive devices. We explain the algorithm and the functionality of the crossbar array and peripheral circuitry and finally demonstrate context-dependent sequence learning using high-order sequences.\",\"PeriodicalId\":375527,\"journal\":{\"name\":\"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3584954.3585000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584954.3585000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

序列学习和预测被认为是由生物大脑进行的基本计算。机器学习算法可以解决这类任务,但它们需要大量的训练数据和大量的能量预算。克服这些问题并实现具有类脑性能的序列学习的一种方法是具有大脑启发学习算法的神经形态硬件。分层时间记忆(HTM)是一种受新皮层工作原理启发的算法,能够学习和预测元素的连续序列。在之前的一项研究中,我们发现记忆装置是一种新兴的非易失性记忆技术,被认为是节能的神经形态硬件,可以在HTM模型的时间记忆算法的生物学可信版本中用作突触。我们随后提出了一个模拟混合信号忆阻硬件架构的仿真研究,可以实现时间学习算法。这种架构,我们称之为MemSpikingTM,是基于记忆交叉棒阵列和实现神经元和学习机制的控制电路。在这项研究中,我们展示了MemSpikingTM算法在一个真实的忆阻交叉棒阵列上的功能,该阵列与基于HfO的忆阻器件共集成在一个商用的130nm CMOS技术节点上。我们解释了交叉棒阵列和外围电路的算法和功能,最后演示了使用高阶序列的上下文相关序列学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demonstration of neuromorphic sequence learning on a memristive array
Sequence learning and prediction are considered principle computations performed by biological brains. Machine learning algorithms solve this type of task, but they require large amounts of training data and a substantial energy budget. An approach to overcome these issues and enable sequence learning with brain-like performance is neuromorphic hardware with brain-inspired learning algorithms. The Hierarchical Temporal Memory (HTM) is an algorithm inspired by the working principles of the neocortex and is able to learn and predict continuous sequences of elements. In a previous study, we showed that memristive devices, an emerging non-volatile memory technology, that is considered for energy efficient neuromorphic hardware, can be used as synapses in a biologically plausible version of the temporal memory algorithm of the HTM model. We subsequently presented a simulation study of an analog-mixed signal memristive hardware architecture that can implement the temporal learning algorithm. This architecture, which we refer to as MemSpikingTM, is based on a memristive crossbar array and a control circuitry implementing the neurons and the learning mechanism. In the study presented here, we demonstrate the functionality of the MemSpikingTM algorithm on a real memristive crossbar array, taped out in a commercially available 130nm CMOS technology node co-integrated with HfO based memristive devices. We explain the algorithm and the functionality of the crossbar array and peripheral circuitry and finally demonstrate context-dependent sequence learning using high-order sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sigma-Delta Networks for Robot Arm Control Easy and efficient spike-based Machine Learning with mlGeNN SupportHDC: Hyperdimensional Computing with Scalable Hypervector Sparsity Exploring Information-Theoretic Criteria to Accelerate the Tuning of Neuromorphic Level-Crossing ADCs Demonstration of neuromorphic sequence learning on a memristive array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1