求解对称锥变分不等式的投影与收缩方法

Yuhua Zeng, Ye Lou
{"title":"求解对称锥变分不等式的投影与收缩方法","authors":"Yuhua Zeng, Ye Lou","doi":"10.1109/BCGIN.2011.180","DOIUrl":null,"url":null,"abstract":"In this paper, we employ projection and contraction methods (PC method) to solve variational inequality defined on a closed and convex symmetric cone (SCVI). By introducing Jordan product operator into a finite-dimensional inner product space $V$, we get an Euclidean Jordan algebras $(V, \\circ)$. For a given $x\\in V$, we have a spectral decomposition of $x$ with respect to a Jordan frame of $V$. Therefore, we can easily obtain projection of $x$ on the square cone $K$ of $V$($K$ is a symmetric cone). We describe some implementation issues of PC-methods for solving $\\mbox{SCVI}(K, F)$ with uniformly strong monotone mapping $F$, while $K=R_+^n$, $K=\\Lambda^n_+$ and $K=S^n_+$, respectively. Finally, we propose an implementation of PC methods for $\\mbox{SCVI}(S^n_+, F)$ with uniformly strong monotone and Lipschitz continue mapping $F: S^n\\right arrow S^n$, and give some numerical results to show validity of the proposed method.","PeriodicalId":127523,"journal":{"name":"2011 International Conference on Business Computing and Global Informatization","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projection and Contraction Methods for Solving Symmetric Cone Variational Inequalities\",\"authors\":\"Yuhua Zeng, Ye Lou\",\"doi\":\"10.1109/BCGIN.2011.180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we employ projection and contraction methods (PC method) to solve variational inequality defined on a closed and convex symmetric cone (SCVI). By introducing Jordan product operator into a finite-dimensional inner product space $V$, we get an Euclidean Jordan algebras $(V, \\\\circ)$. For a given $x\\\\in V$, we have a spectral decomposition of $x$ with respect to a Jordan frame of $V$. Therefore, we can easily obtain projection of $x$ on the square cone $K$ of $V$($K$ is a symmetric cone). We describe some implementation issues of PC-methods for solving $\\\\mbox{SCVI}(K, F)$ with uniformly strong monotone mapping $F$, while $K=R_+^n$, $K=\\\\Lambda^n_+$ and $K=S^n_+$, respectively. Finally, we propose an implementation of PC methods for $\\\\mbox{SCVI}(S^n_+, F)$ with uniformly strong monotone and Lipschitz continue mapping $F: S^n\\\\right arrow S^n$, and give some numerical results to show validity of the proposed method.\",\"PeriodicalId\":127523,\"journal\":{\"name\":\"2011 International Conference on Business Computing and Global Informatization\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Business Computing and Global Informatization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCGIN.2011.180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Business Computing and Global Informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCGIN.2011.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用投影和收缩方法(PC方法)求解了定义在闭凸对称锥(SCVI)上的变分不等式。将Jordan积算子引入有限维内积空间,得到欧几里德Jordan代数(V, \circ)。对于给定的V$中的$x,我们得到了$x$关于$V$的Jordan坐标系的谱分解。因此,我们可以很容易地得到$x$在$V$的正方形锥$K$上的投影($K$是对称锥)。描述了在$K=R_+^n$、$K=\Lambda^n_+$和$K=S^n_+$时,具有一致强单调映射$F$的$\mbox{SCVI}(K, F)$的pc -方法的一些实现问题。最后,我们给出了具有一致强单调的$\mbox{SCVI}(S^n_+, F)$和Lipschitz连续映射$F: S^n\右箭头S^n$的PC方法的实现,并给出了一些数值结果来证明所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Projection and Contraction Methods for Solving Symmetric Cone Variational Inequalities
In this paper, we employ projection and contraction methods (PC method) to solve variational inequality defined on a closed and convex symmetric cone (SCVI). By introducing Jordan product operator into a finite-dimensional inner product space $V$, we get an Euclidean Jordan algebras $(V, \circ)$. For a given $x\in V$, we have a spectral decomposition of $x$ with respect to a Jordan frame of $V$. Therefore, we can easily obtain projection of $x$ on the square cone $K$ of $V$($K$ is a symmetric cone). We describe some implementation issues of PC-methods for solving $\mbox{SCVI}(K, F)$ with uniformly strong monotone mapping $F$, while $K=R_+^n$, $K=\Lambda^n_+$ and $K=S^n_+$, respectively. Finally, we propose an implementation of PC methods for $\mbox{SCVI}(S^n_+, F)$ with uniformly strong monotone and Lipschitz continue mapping $F: S^n\right arrow S^n$, and give some numerical results to show validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Bisect K-Means Clustering Algorithm A Labeling Algorithm for the Earliest and Latest Time-Varying Maximum Flow Problems The Research on Motive Force of Urban Development Based on Informationization The Eddy Currents Calculation Based on the Least Square Algorithm for EAST A Passive Locating Algorithm for Motive Target Based on Modified Particle Filter Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1