果蝇天线传感器化学传感神经响应空间间的插值映射

M. Strauch, Karl Krüger, L. Mukunda, Alja Lüdke, C. Galizia, D. Merhof
{"title":"果蝇天线传感器化学传感神经响应空间间的插值映射","authors":"M. Strauch, Karl Krüger, L. Mukunda, Alja Lüdke, C. Galizia, D. Merhof","doi":"10.1109/BIBE.2019.00135","DOIUrl":null,"url":null,"abstract":"The odorant receptor neurons on the fruit fly antenna are highly sensitive to a broad range of chemicals. A compound signal of receptor activity on the antenna can be read out in real time with functional neuroimaging, and individual receptor responses to hundreds of odorants are available in a database. Utilizing the fruit fly antenna as chemosensor enables applications ranging from biomarker detection to identification of unknown chemicals in samples. Here, we propose to connect neural response spaces, mapping odorant responses from one fly to another and to database space. A map is defined exactly for reference odorants common to both subject and target space, while the map for the remaining odorants is estimated based on radial basis function interpolation. On a data set with chemically diverse odorants, mapping to another antenna allows identifying unlabelled subject space odorants by the proximity of their mapped position to labelled odorants in target space. Furthermore, mapping from antenna to database space predicts the individual receptor responses significantly better than a random baseline model, suggesting that receptor responses can be inferred from the compound antenna signal given a sufficiently dense net of reference odorants to support the map.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolating Maps between Neural Response Spaces for Chemosensing with Fruit Fly Antenna Sensors\",\"authors\":\"M. Strauch, Karl Krüger, L. Mukunda, Alja Lüdke, C. Galizia, D. Merhof\",\"doi\":\"10.1109/BIBE.2019.00135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The odorant receptor neurons on the fruit fly antenna are highly sensitive to a broad range of chemicals. A compound signal of receptor activity on the antenna can be read out in real time with functional neuroimaging, and individual receptor responses to hundreds of odorants are available in a database. Utilizing the fruit fly antenna as chemosensor enables applications ranging from biomarker detection to identification of unknown chemicals in samples. Here, we propose to connect neural response spaces, mapping odorant responses from one fly to another and to database space. A map is defined exactly for reference odorants common to both subject and target space, while the map for the remaining odorants is estimated based on radial basis function interpolation. On a data set with chemically diverse odorants, mapping to another antenna allows identifying unlabelled subject space odorants by the proximity of their mapped position to labelled odorants in target space. Furthermore, mapping from antenna to database space predicts the individual receptor responses significantly better than a random baseline model, suggesting that receptor responses can be inferred from the compound antenna signal given a sufficiently dense net of reference odorants to support the map.\",\"PeriodicalId\":318819,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2019.00135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

果蝇触角上的气味受体神经元对多种化学物质高度敏感。天线上受体活动的复合信号可以通过功能性神经成像实时读出,并且单个受体对数百种气味的反应可以在数据库中获得。利用果蝇天线作为化学传感器,应用范围从生物标志物检测到样品中未知化学物质的鉴定。在这里,我们建议连接神经反应空间,将气味反应从一只苍蝇映射到另一只苍蝇和数据库空间。对主体和目标空间共有的参考气味精确定义映射,剩余气味的映射基于径向基函数插值估计。在具有不同化学气味的数据集上,映射到另一个天线允许通过其映射位置接近目标空间中的标记气味来识别未标记的主题空间气味。此外,从天线到数据库空间的映射比随机基线模型更能预测个体受体的反应,这表明在给定足够密集的参考气味网络支持该映射的情况下,可以从复合天线信号推断出受体的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpolating Maps between Neural Response Spaces for Chemosensing with Fruit Fly Antenna Sensors
The odorant receptor neurons on the fruit fly antenna are highly sensitive to a broad range of chemicals. A compound signal of receptor activity on the antenna can be read out in real time with functional neuroimaging, and individual receptor responses to hundreds of odorants are available in a database. Utilizing the fruit fly antenna as chemosensor enables applications ranging from biomarker detection to identification of unknown chemicals in samples. Here, we propose to connect neural response spaces, mapping odorant responses from one fly to another and to database space. A map is defined exactly for reference odorants common to both subject and target space, while the map for the remaining odorants is estimated based on radial basis function interpolation. On a data set with chemically diverse odorants, mapping to another antenna allows identifying unlabelled subject space odorants by the proximity of their mapped position to labelled odorants in target space. Furthermore, mapping from antenna to database space predicts the individual receptor responses significantly better than a random baseline model, suggesting that receptor responses can be inferred from the compound antenna signal given a sufficiently dense net of reference odorants to support the map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability Investigation Using Hydrogen Bonds for Different Mutations and Drug Resistance in Non-Small Cell Lung Cancer Patients A Temporal Convolution Network Solution for EEG Motor Imagery Classification Evaluation of a Serious Game Promoting Nutrition and Food Literacy: Experiment Design and Preliminary Results Towards a Robust and Accurate Screening Tool for Dyslexia with Data Augmentation using GANs Exploring Fibrotic Disease Networks to Identify Common Molecular Mechanisms with IPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1