基于多维知识表示的抽取文本摘要研究

Johannes Zenkert, André Klahold, M. Fathi
{"title":"基于多维知识表示的抽取文本摘要研究","authors":"Johannes Zenkert, André Klahold, M. Fathi","doi":"10.1109/EIT.2018.8500186","DOIUrl":null,"url":null,"abstract":"Multidimensional knowledge representation (MKR) is the result of integrative text mining. Analysis results from individual text mining methods such as named entity recognition, sentiment analysis, or topic detection are represented as dimensions in a knowledge base to support knowledge discovery, visualization or complex computer-aided writing tasks. Extractive text summarization is a content-oriented task which uses available information from text to shorten its length in order to summarize it. In this regard, a MKR knowledge base provides a structure which is applicable as an innovative selection instrument for text summarization. This paper introduces cross-dimensional text summarization based on dimensional selection and filtering of results retrieved from MKR knowledge base.","PeriodicalId":188414,"journal":{"name":"2018 IEEE International Conference on Electro/Information Technology (EIT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Towards Extractive Text Summarization Using Multidimensional Knowledge Representation\",\"authors\":\"Johannes Zenkert, André Klahold, M. Fathi\",\"doi\":\"10.1109/EIT.2018.8500186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multidimensional knowledge representation (MKR) is the result of integrative text mining. Analysis results from individual text mining methods such as named entity recognition, sentiment analysis, or topic detection are represented as dimensions in a knowledge base to support knowledge discovery, visualization or complex computer-aided writing tasks. Extractive text summarization is a content-oriented task which uses available information from text to shorten its length in order to summarize it. In this regard, a MKR knowledge base provides a structure which is applicable as an innovative selection instrument for text summarization. This paper introduces cross-dimensional text summarization based on dimensional selection and filtering of results retrieved from MKR knowledge base.\",\"PeriodicalId\":188414,\"journal\":{\"name\":\"2018 IEEE International Conference on Electro/Information Technology (EIT)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Electro/Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2018.8500186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2018.8500186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

多维知识表示(MKR)是综合文本挖掘的结果。来自单个文本挖掘方法(如命名实体识别、情感分析或主题检测)的分析结果被表示为知识库中的维度,以支持知识发现、可视化或复杂的计算机辅助写作任务。摘要文本抽取是一种面向内容的任务,它利用文本中的可用信息来缩短文本的长度,从而对文本进行总结。在这方面,MKR知识库提供了一种适用于文本摘要的创新选择工具的结构。本文介绍了一种基于维度选择的跨维度文本摘要方法,并对从MKR知识库中检索到的结果进行过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Extractive Text Summarization Using Multidimensional Knowledge Representation
Multidimensional knowledge representation (MKR) is the result of integrative text mining. Analysis results from individual text mining methods such as named entity recognition, sentiment analysis, or topic detection are represented as dimensions in a knowledge base to support knowledge discovery, visualization or complex computer-aided writing tasks. Extractive text summarization is a content-oriented task which uses available information from text to shorten its length in order to summarize it. In this regard, a MKR knowledge base provides a structure which is applicable as an innovative selection instrument for text summarization. This paper introduces cross-dimensional text summarization based on dimensional selection and filtering of results retrieved from MKR knowledge base.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing A Dynamic Queueing Model for The Airport Check-in Process Issues and Challenges in VANET Routing Protocols Depiction of a Circulated Double Psi-Shaped Microstrip Antenna for Ku-Band Satellite Applications A Generic Approach CNN-Based Camera Identification for Manipulated Images Intelligent System Demonstrator for Secure Luggage Handling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1