基于小波变换的蚁群与粒子群混合算法图像配准

Aiye Shi, Fengchen Huang, Yang Pan, Lizhong Xu
{"title":"基于小波变换的蚁群与粒子群混合算法图像配准","authors":"Aiye Shi, Fengchen Huang, Yang Pan, Lizhong Xu","doi":"10.1109/ICMV.2009.11","DOIUrl":null,"url":null,"abstract":"Mutual information based image registration has the advantages of high precision and strong robustness. However, the solution of this registration method is easy to fall into the local extremes. To overcome this problem, in this paper we propose a new optimal algorithm for image registration, which combines ant colony algorithm with particle swarm algorithm based on wavelet transform. Experiment results demonstrate our proposed approach effective.","PeriodicalId":315778,"journal":{"name":"2009 Second International Conference on Machine Vision","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Image Registration Using Ant Colony and Particle Swarm Hybrid Algorithm Based on Wavelet Transform\",\"authors\":\"Aiye Shi, Fengchen Huang, Yang Pan, Lizhong Xu\",\"doi\":\"10.1109/ICMV.2009.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutual information based image registration has the advantages of high precision and strong robustness. However, the solution of this registration method is easy to fall into the local extremes. To overcome this problem, in this paper we propose a new optimal algorithm for image registration, which combines ant colony algorithm with particle swarm algorithm based on wavelet transform. Experiment results demonstrate our proposed approach effective.\",\"PeriodicalId\":315778,\"journal\":{\"name\":\"2009 Second International Conference on Machine Vision\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Conference on Machine Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMV.2009.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMV.2009.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于互信息的图像配准具有精度高、鲁棒性强的优点。然而,这种配准方法的解容易陷入局部极值。为了克服这一问题,本文提出了一种新的图像配准优化算法,该算法将蚁群算法与基于小波变换的粒子群算法相结合。实验结果表明该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Registration Using Ant Colony and Particle Swarm Hybrid Algorithm Based on Wavelet Transform
Mutual information based image registration has the advantages of high precision and strong robustness. However, the solution of this registration method is easy to fall into the local extremes. To overcome this problem, in this paper we propose a new optimal algorithm for image registration, which combines ant colony algorithm with particle swarm algorithm based on wavelet transform. Experiment results demonstrate our proposed approach effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Particle Swarm Steepest Gradient Algorithm for Elastic Brain Image Registration Early Software Fault Prediction Using Real Time Defect Data Effective Watermarking of Digital Audio and Image Using Matlab Technique A Robust Neural System for Objectionable Image Recognition A Hybrid Scheme for Online Detection and Classification of Textural Fabric Defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1