{"title":"基于随机行走的深度卷积神经网络增量滤波剪枝","authors":"Qinghua Li, Cuiping Li, Hong Chen","doi":"10.1145/3336191.3371849","DOIUrl":null,"url":null,"abstract":"Accelerating Deep Convolutional Neural Networks (CNNs) has recently received ever-increasing research focus. Among various approaches proposed in the literature, filter pruning has been regarded as a promising solution, which is due to its advantage in significant speedup and memory reduction of both network model and intermediate feature maps. Previous works utilized \"smaller-norm-less-important\" criterion to prune filters with smaller ࡁp-norm values by pruning and retraining alternately. This trends to narrow the model capacity for the following reasons: (1) Violent pruning. Previous works adopt a violent strategy in which all filters are simultaneously pruned, which leaving the room to retain model accuracy limited. (2) Filter degradation. Previous works simply set the pruned filter to 0 and retrained it alterately, which easily led to the loss of learning ability of filters. To solve this problem, we propose a novel filter pruning method, namely Incremental Filter Pruning via Random Walk (IFPRW). IFPRW solves the problem of violent pruning by incremental method and Filter degradation by means of random walk. When applied to two image classification benchmarks, the usefulness and strength of IFPRW is validated. Notably, on CIFAR-10, IFPRW reduces more than 46% FLOPs on ResNet-110 with even 0.28% relative accuracy improvement. Moreover, on ILSVRC-2012, IFPRW reduces more than 54% FLOPs on ResNet-101 with only 0.7% top-5 accurcacy drop. which proving that IFPRW outperforms the state-of-the-art filter pruning methods.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Incremental Filter Pruning via Random Walk for Accelerating Deep Convolutional Neural Networks\",\"authors\":\"Qinghua Li, Cuiping Li, Hong Chen\",\"doi\":\"10.1145/3336191.3371849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accelerating Deep Convolutional Neural Networks (CNNs) has recently received ever-increasing research focus. Among various approaches proposed in the literature, filter pruning has been regarded as a promising solution, which is due to its advantage in significant speedup and memory reduction of both network model and intermediate feature maps. Previous works utilized \\\"smaller-norm-less-important\\\" criterion to prune filters with smaller ࡁp-norm values by pruning and retraining alternately. This trends to narrow the model capacity for the following reasons: (1) Violent pruning. Previous works adopt a violent strategy in which all filters are simultaneously pruned, which leaving the room to retain model accuracy limited. (2) Filter degradation. Previous works simply set the pruned filter to 0 and retrained it alterately, which easily led to the loss of learning ability of filters. To solve this problem, we propose a novel filter pruning method, namely Incremental Filter Pruning via Random Walk (IFPRW). IFPRW solves the problem of violent pruning by incremental method and Filter degradation by means of random walk. When applied to two image classification benchmarks, the usefulness and strength of IFPRW is validated. Notably, on CIFAR-10, IFPRW reduces more than 46% FLOPs on ResNet-110 with even 0.28% relative accuracy improvement. Moreover, on ILSVRC-2012, IFPRW reduces more than 54% FLOPs on ResNet-101 with only 0.7% top-5 accurcacy drop. which proving that IFPRW outperforms the state-of-the-art filter pruning methods.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Incremental Filter Pruning via Random Walk for Accelerating Deep Convolutional Neural Networks
Accelerating Deep Convolutional Neural Networks (CNNs) has recently received ever-increasing research focus. Among various approaches proposed in the literature, filter pruning has been regarded as a promising solution, which is due to its advantage in significant speedup and memory reduction of both network model and intermediate feature maps. Previous works utilized "smaller-norm-less-important" criterion to prune filters with smaller ࡁp-norm values by pruning and retraining alternately. This trends to narrow the model capacity for the following reasons: (1) Violent pruning. Previous works adopt a violent strategy in which all filters are simultaneously pruned, which leaving the room to retain model accuracy limited. (2) Filter degradation. Previous works simply set the pruned filter to 0 and retrained it alterately, which easily led to the loss of learning ability of filters. To solve this problem, we propose a novel filter pruning method, namely Incremental Filter Pruning via Random Walk (IFPRW). IFPRW solves the problem of violent pruning by incremental method and Filter degradation by means of random walk. When applied to two image classification benchmarks, the usefulness and strength of IFPRW is validated. Notably, on CIFAR-10, IFPRW reduces more than 46% FLOPs on ResNet-110 with even 0.28% relative accuracy improvement. Moreover, on ILSVRC-2012, IFPRW reduces more than 54% FLOPs on ResNet-101 with only 0.7% top-5 accurcacy drop. which proving that IFPRW outperforms the state-of-the-art filter pruning methods.