基于随机行走的深度卷积神经网络增量滤波剪枝

Qinghua Li, Cuiping Li, Hong Chen
{"title":"基于随机行走的深度卷积神经网络增量滤波剪枝","authors":"Qinghua Li, Cuiping Li, Hong Chen","doi":"10.1145/3336191.3371849","DOIUrl":null,"url":null,"abstract":"Accelerating Deep Convolutional Neural Networks (CNNs) has recently received ever-increasing research focus. Among various approaches proposed in the literature, filter pruning has been regarded as a promising solution, which is due to its advantage in significant speedup and memory reduction of both network model and intermediate feature maps. Previous works utilized \"smaller-norm-less-important\" criterion to prune filters with smaller ࡁp-norm values by pruning and retraining alternately. This trends to narrow the model capacity for the following reasons: (1) Violent pruning. Previous works adopt a violent strategy in which all filters are simultaneously pruned, which leaving the room to retain model accuracy limited. (2) Filter degradation. Previous works simply set the pruned filter to 0 and retrained it alterately, which easily led to the loss of learning ability of filters. To solve this problem, we propose a novel filter pruning method, namely Incremental Filter Pruning via Random Walk (IFPRW). IFPRW solves the problem of violent pruning by incremental method and Filter degradation by means of random walk. When applied to two image classification benchmarks, the usefulness and strength of IFPRW is validated. Notably, on CIFAR-10, IFPRW reduces more than 46% FLOPs on ResNet-110 with even 0.28% relative accuracy improvement. Moreover, on ILSVRC-2012, IFPRW reduces more than 54% FLOPs on ResNet-101 with only 0.7% top-5 accurcacy drop. which proving that IFPRW outperforms the state-of-the-art filter pruning methods.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Incremental Filter Pruning via Random Walk for Accelerating Deep Convolutional Neural Networks\",\"authors\":\"Qinghua Li, Cuiping Li, Hong Chen\",\"doi\":\"10.1145/3336191.3371849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accelerating Deep Convolutional Neural Networks (CNNs) has recently received ever-increasing research focus. Among various approaches proposed in the literature, filter pruning has been regarded as a promising solution, which is due to its advantage in significant speedup and memory reduction of both network model and intermediate feature maps. Previous works utilized \\\"smaller-norm-less-important\\\" criterion to prune filters with smaller ࡁp-norm values by pruning and retraining alternately. This trends to narrow the model capacity for the following reasons: (1) Violent pruning. Previous works adopt a violent strategy in which all filters are simultaneously pruned, which leaving the room to retain model accuracy limited. (2) Filter degradation. Previous works simply set the pruned filter to 0 and retrained it alterately, which easily led to the loss of learning ability of filters. To solve this problem, we propose a novel filter pruning method, namely Incremental Filter Pruning via Random Walk (IFPRW). IFPRW solves the problem of violent pruning by incremental method and Filter degradation by means of random walk. When applied to two image classification benchmarks, the usefulness and strength of IFPRW is validated. Notably, on CIFAR-10, IFPRW reduces more than 46% FLOPs on ResNet-110 with even 0.28% relative accuracy improvement. Moreover, on ILSVRC-2012, IFPRW reduces more than 54% FLOPs on ResNet-101 with only 0.7% top-5 accurcacy drop. which proving that IFPRW outperforms the state-of-the-art filter pruning methods.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

加速深度卷积神经网络(cnn)近年来受到越来越多的研究热点。在文献中提出的各种方法中,过滤器修剪被认为是一种很有前途的解决方案,这是因为它在网络模型和中间特征映射的显著加速和内存减少方面具有优势。以前的工作采用“较小的规范-不重要”准则,通过修剪和再训练交替修剪ࡁp-norm值较小的过滤器。这将导致模型容量的缩小,原因如下:(1)剧烈修剪。以前的作品采用了一种暴力策略,即同时修剪所有滤波器,这使得保留模型精度的空间有限。(2)过滤器降解。以往的工作都是简单地将被修剪过的滤波器设为0,然后交替进行再训练,容易导致滤波器的学习能力丧失。为了解决这一问题,我们提出了一种新的滤波剪枝方法,即通过随机行走的增量滤波剪枝(IFPRW)。IFPRW用增量法解决了暴力剪枝问题,用随机漫步法解决了滤波器退化问题。当应用于两个图像分类基准时,验证了IFPRW的有效性和强度。值得注意的是,在CIFAR-10上,IFPRW在ResNet-110上减少了46%以上的FLOPs,相对精度甚至提高了0.28%。此外,在ILSVRC-2012上,IFPRW在ResNet-101上减少了54%以上的FLOPs,而前5名精度仅下降了0.7%。这证明IFPRW优于最先进的过滤器修剪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incremental Filter Pruning via Random Walk for Accelerating Deep Convolutional Neural Networks
Accelerating Deep Convolutional Neural Networks (CNNs) has recently received ever-increasing research focus. Among various approaches proposed in the literature, filter pruning has been regarded as a promising solution, which is due to its advantage in significant speedup and memory reduction of both network model and intermediate feature maps. Previous works utilized "smaller-norm-less-important" criterion to prune filters with smaller ࡁp-norm values by pruning and retraining alternately. This trends to narrow the model capacity for the following reasons: (1) Violent pruning. Previous works adopt a violent strategy in which all filters are simultaneously pruned, which leaving the room to retain model accuracy limited. (2) Filter degradation. Previous works simply set the pruned filter to 0 and retrained it alterately, which easily led to the loss of learning ability of filters. To solve this problem, we propose a novel filter pruning method, namely Incremental Filter Pruning via Random Walk (IFPRW). IFPRW solves the problem of violent pruning by incremental method and Filter degradation by means of random walk. When applied to two image classification benchmarks, the usefulness and strength of IFPRW is validated. Notably, on CIFAR-10, IFPRW reduces more than 46% FLOPs on ResNet-110 with even 0.28% relative accuracy improvement. Moreover, on ILSVRC-2012, IFPRW reduces more than 54% FLOPs on ResNet-101 with only 0.7% top-5 accurcacy drop. which proving that IFPRW outperforms the state-of-the-art filter pruning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1