社交网络中的隐私:你的社交图谱有多危险?

C. Akcora, B. Carminati, E. Ferrari
{"title":"社交网络中的隐私:你的社交图谱有多危险?","authors":"C. Akcora, B. Carminati, E. Ferrari","doi":"10.1109/ICDE.2012.99","DOIUrl":null,"url":null,"abstract":"Several efforts have been made for more privacy aware Online Social Networks (OSNs) to protect personal data against various privacy threats. However, despite the relevance of these proposals, we believe there is still the lack of a conceptual model on top of which privacy tools have to be designed. Central to this model should be the concept of risk. Therefore, in this paper, we propose a risk measure for OSNs. The aim is to associate a risk level with social network users in order to provide other users with a measure of how much it might be risky, in terms of disclosure of private information, to have interactions with them. We compute risk levels based on similarity and benefit measures, by also taking into account the user risk attitudes. In particular, we adopt an active learning approach for risk estimation, where user risk attitude is learned from few required user interactions. The risk estimation process discussed in this paper has been developed into a Facebook application and tested on real data. The experiments show the effectiveness of our proposal.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Privacy in Social Networks: How Risky is Your Social Graph?\",\"authors\":\"C. Akcora, B. Carminati, E. Ferrari\",\"doi\":\"10.1109/ICDE.2012.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several efforts have been made for more privacy aware Online Social Networks (OSNs) to protect personal data against various privacy threats. However, despite the relevance of these proposals, we believe there is still the lack of a conceptual model on top of which privacy tools have to be designed. Central to this model should be the concept of risk. Therefore, in this paper, we propose a risk measure for OSNs. The aim is to associate a risk level with social network users in order to provide other users with a measure of how much it might be risky, in terms of disclosure of private information, to have interactions with them. We compute risk levels based on similarity and benefit measures, by also taking into account the user risk attitudes. In particular, we adopt an active learning approach for risk estimation, where user risk attitude is learned from few required user interactions. The risk estimation process discussed in this paper has been developed into a Facebook application and tested on real data. The experiments show the effectiveness of our proposal.\",\"PeriodicalId\":321608,\"journal\":{\"name\":\"2012 IEEE 28th International Conference on Data Engineering\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 28th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2012.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

为了保护个人数据免受各种隐私威胁,在线社交网络(OSNs)已经做出了一些努力。然而,尽管这些建议具有相关性,但我们认为仍然缺乏一个概念模型,在此基础上设计隐私工具。这个模型的核心应该是风险的概念。因此,本文提出了一种osn的风险度量方法。其目的是将社交网络用户的风险水平联系起来,以便为其他用户提供一个衡量标准,即与他们互动可能存在多大风险,就披露私人信息而言。我们计算基于相似性和效益措施的风险水平,也考虑到用户的风险态度。特别是,我们采用了一种主动学习的方法来进行风险评估,其中用户的风险态度是通过少量必要的用户交互来学习的。本文讨论的风险评估过程已经开发到一个Facebook应用程序中,并在真实数据上进行了测试。实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Privacy in Social Networks: How Risky is Your Social Graph?
Several efforts have been made for more privacy aware Online Social Networks (OSNs) to protect personal data against various privacy threats. However, despite the relevance of these proposals, we believe there is still the lack of a conceptual model on top of which privacy tools have to be designed. Central to this model should be the concept of risk. Therefore, in this paper, we propose a risk measure for OSNs. The aim is to associate a risk level with social network users in order to provide other users with a measure of how much it might be risky, in terms of disclosure of private information, to have interactions with them. We compute risk levels based on similarity and benefit measures, by also taking into account the user risk attitudes. In particular, we adopt an active learning approach for risk estimation, where user risk attitude is learned from few required user interactions. The risk estimation process discussed in this paper has been developed into a Facebook application and tested on real data. The experiments show the effectiveness of our proposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1