OpenStreetMap道路网络的自动公路标签评估

Musfira Jilani, P. Corcoran, M. Bertolotto
{"title":"OpenStreetMap道路网络的自动公路标签评估","authors":"Musfira Jilani, P. Corcoran, M. Bertolotto","doi":"10.1145/2666310.2666476","DOIUrl":null,"url":null,"abstract":"OpenStreetMap (OSM) has been demonstrated to be a valuable source of spatial data in the context of many applications. However concerns still exist regarding the quality of such data and this has limited the proliferation of its use. Consequently much research has been invested in the development of methods for assessing and/or improving the quality of OSM data. However most of these methods require ground-truth data, which, in many cases, may not be available. In this paper we present a novel solution for OSM data quality assessment that does not require ground-truth data. We consider the semantic accuracy of OSM street network data, and in particular, the associated semantic class (road class) information. A machine learning model is proposed that learns the geometrical and topological characteristics of different semantic classes of streets. This model is subsequently used to accurately determine if a street has been assigned a correct/incorrect semantic class.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Automated highway tag assessment of OpenStreetMap road networks\",\"authors\":\"Musfira Jilani, P. Corcoran, M. Bertolotto\",\"doi\":\"10.1145/2666310.2666476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OpenStreetMap (OSM) has been demonstrated to be a valuable source of spatial data in the context of many applications. However concerns still exist regarding the quality of such data and this has limited the proliferation of its use. Consequently much research has been invested in the development of methods for assessing and/or improving the quality of OSM data. However most of these methods require ground-truth data, which, in many cases, may not be available. In this paper we present a novel solution for OSM data quality assessment that does not require ground-truth data. We consider the semantic accuracy of OSM street network data, and in particular, the associated semantic class (road class) information. A machine learning model is proposed that learns the geometrical and topological characteristics of different semantic classes of streets. This model is subsequently used to accurately determine if a street has been assigned a correct/incorrect semantic class.\",\"PeriodicalId\":153031,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666310.2666476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

OpenStreetMap (OSM)已被证明是许多应用环境中有价值的空间数据来源。然而,对这类数据的质量仍然存在关切,这限制了其使用的扩散。因此,在开发评估和(或)改进OSM数据质量的方法方面投入了大量研究。然而,这些方法中的大多数都需要真实的数据,而在许多情况下,这些数据可能无法获得。在本文中,我们提出了一种新的解决方案,用于OSM数据质量评估,不需要真实数据。我们考虑OSM街道网络数据的语义准确性,特别是相关的语义类(道路类)信息。提出了一种学习不同语义类别街道的几何和拓扑特征的机器学习模型。该模型随后用于准确地确定街道是否被分配了正确/不正确的语义类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated highway tag assessment of OpenStreetMap road networks
OpenStreetMap (OSM) has been demonstrated to be a valuable source of spatial data in the context of many applications. However concerns still exist regarding the quality of such data and this has limited the proliferation of its use. Consequently much research has been invested in the development of methods for assessing and/or improving the quality of OSM data. However most of these methods require ground-truth data, which, in many cases, may not be available. In this paper we present a novel solution for OSM data quality assessment that does not require ground-truth data. We consider the semantic accuracy of OSM street network data, and in particular, the associated semantic class (road class) information. A machine learning model is proposed that learns the geometrical and topological characteristics of different semantic classes of streets. This model is subsequently used to accurately determine if a street has been assigned a correct/incorrect semantic class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A parallel query engine for interactive spatiotemporal analysis Spatio-temporal trajectory simplification for inferring travel paths Parameterized spatial query processing based on social probabilistic clustering Accurate and efficient map matching for challenging environments Top-k point of interest retrieval using standard indexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1