Mina Kim, Cheng Wang, L. Yi, Hae-Seung Lee, R. Han
{"title":"基于双环光谱检测和数字频率误差集成的亚太赫兹CMOS分子钟10000 s稳定性为20ppt","authors":"Mina Kim, Cheng Wang, L. Yi, Hae-Seung Lee, R. Han","doi":"10.1109/RFIC54546.2022.9863147","DOIUrl":null,"url":null,"abstract":"This paper presents a dual-loop chip-scale molecular clock (CSMC), which enhances the Allan Deviation performance by combining high signal-to-noise ratio of using fundamental mode and long-term stability of using higher order modes in derivative molecular absorption spectroscopy. In addition, digital frequency-error integration is adopted in the frequency-locked loop to provide an infinite open-loop DC gain, which fully suppresses any frequency drift caused by the temperature-sensitive crystal oscillator. This new generation CSMC is implemented in 65-nm CMOS, and achieves 20 ppt (part-per-trillion) Allan Deviation at 10,000 s averaging time with 71-mW power consumption.","PeriodicalId":415294,"journal":{"name":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Sub- THz CMOS Molecular Clock with 20 ppt Stability at 10,000 s Based on Dual-Loop Spectroscopic Detection and Digital Frequency Error Integration\",\"authors\":\"Mina Kim, Cheng Wang, L. Yi, Hae-Seung Lee, R. Han\",\"doi\":\"10.1109/RFIC54546.2022.9863147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a dual-loop chip-scale molecular clock (CSMC), which enhances the Allan Deviation performance by combining high signal-to-noise ratio of using fundamental mode and long-term stability of using higher order modes in derivative molecular absorption spectroscopy. In addition, digital frequency-error integration is adopted in the frequency-locked loop to provide an infinite open-loop DC gain, which fully suppresses any frequency drift caused by the temperature-sensitive crystal oscillator. This new generation CSMC is implemented in 65-nm CMOS, and achieves 20 ppt (part-per-trillion) Allan Deviation at 10,000 s averaging time with 71-mW power consumption.\",\"PeriodicalId\":415294,\"journal\":{\"name\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC54546.2022.9863147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC54546.2022.9863147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Sub- THz CMOS Molecular Clock with 20 ppt Stability at 10,000 s Based on Dual-Loop Spectroscopic Detection and Digital Frequency Error Integration
This paper presents a dual-loop chip-scale molecular clock (CSMC), which enhances the Allan Deviation performance by combining high signal-to-noise ratio of using fundamental mode and long-term stability of using higher order modes in derivative molecular absorption spectroscopy. In addition, digital frequency-error integration is adopted in the frequency-locked loop to provide an infinite open-loop DC gain, which fully suppresses any frequency drift caused by the temperature-sensitive crystal oscillator. This new generation CSMC is implemented in 65-nm CMOS, and achieves 20 ppt (part-per-trillion) Allan Deviation at 10,000 s averaging time with 71-mW power consumption.