基于组件的机器人系统性能缺陷的自动故障检测

Johannes Wienke, S. Wrede
{"title":"基于组件的机器人系统性能缺陷的自动故障检测","authors":"Johannes Wienke, S. Wrede","doi":"10.1109/IROS.2016.7759507","DOIUrl":null,"url":null,"abstract":"We present a novel fault detection method for application in component-based robotic systems. In contrast to existing work, our method specifically addresses faults in the software system of the robot using a data-driven methodology which exploits the inter-process communication of the system. This enables an application of the approach without expert knowledge or availability of complex software models. We specifically focus on performance bugs, which slowly degrade the performance of the system and are thereby harder to detect but also most valuable for automatic recovery. Using a data set recorded on a RoboCup@Home platform we demonstrate the performance and applicability of our method and analyze the types of faults that can be detected by the method.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Autonomous fault detection for performance bugs in component-based robotic systems\",\"authors\":\"Johannes Wienke, S. Wrede\",\"doi\":\"10.1109/IROS.2016.7759507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel fault detection method for application in component-based robotic systems. In contrast to existing work, our method specifically addresses faults in the software system of the robot using a data-driven methodology which exploits the inter-process communication of the system. This enables an application of the approach without expert knowledge or availability of complex software models. We specifically focus on performance bugs, which slowly degrade the performance of the system and are thereby harder to detect but also most valuable for automatic recovery. Using a data set recorded on a RoboCup@Home platform we demonstrate the performance and applicability of our method and analyze the types of faults that can be detected by the method.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种适用于基于部件的机器人系统的新型故障检测方法。与现有工作相比,我们的方法使用数据驱动的方法专门解决机器人软件系统中的故障,该方法利用系统的进程间通信。这使得在没有专家知识或复杂软件模型可用性的情况下应用该方法成为可能。我们特别关注性能错误,这些错误会慢慢降低系统的性能,因此很难检测到,但对于自动恢复也是最有价值的。通过在RoboCup@Home平台上记录的数据集,我们证明了该方法的性能和适用性,并分析了该方法可以检测到的故障类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous fault detection for performance bugs in component-based robotic systems
We present a novel fault detection method for application in component-based robotic systems. In contrast to existing work, our method specifically addresses faults in the software system of the robot using a data-driven methodology which exploits the inter-process communication of the system. This enables an application of the approach without expert knowledge or availability of complex software models. We specifically focus on performance bugs, which slowly degrade the performance of the system and are thereby harder to detect but also most valuable for automatic recovery. Using a data set recorded on a RoboCup@Home platform we demonstrate the performance and applicability of our method and analyze the types of faults that can be detected by the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A passivity-based admittance control design using feedback interconnections Performance comparison of Wave Variable Transformation and Time Domain Passivity Approaches for time-delayed teleoperation: Preliminary results Iterative path optimisation for personalised dressing assistance using vision and force information Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1