PARAFAC-Volterra描述的非线性随机系统辨识

Imen Laamiri, H. Messaoud
{"title":"PARAFAC-Volterra描述的非线性随机系统辨识","authors":"Imen Laamiri, H. Messaoud","doi":"10.1109/SSD.2016.7473703","DOIUrl":null,"url":null,"abstract":"In this paper we extend the Alternating RGLS (Recursive Generalized Least Square) algorithm proposed for the identification of the reduced complexity Volterra model describing stochastic nonlinear systems corrupted by AR (AutoRegressive) noise to case of systems corrupted by ARMA (AutoRegressive Moving Average) noise. The reduced Volterra model used is the 3rd order PARAFC-Volterra model provided using the PARAFAC (PARAllel FACtor) tensor decomposition of the Volterra kernels of order higher than two of the classical Volterra model. The recursive stochastic algorithm ARGLS (Alternating RGLS) consists of the execution in an alternating way of the classical RGLS algorithm developed to identify the linear stochastic input-output models. The efficiency of the proposed identification approach is proved using Monte Carlo simulation on a nonlinear satellite channel.","PeriodicalId":149580,"journal":{"name":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of nonlinear stochastic systems described by PARAFAC-Volterra\",\"authors\":\"Imen Laamiri, H. Messaoud\",\"doi\":\"10.1109/SSD.2016.7473703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we extend the Alternating RGLS (Recursive Generalized Least Square) algorithm proposed for the identification of the reduced complexity Volterra model describing stochastic nonlinear systems corrupted by AR (AutoRegressive) noise to case of systems corrupted by ARMA (AutoRegressive Moving Average) noise. The reduced Volterra model used is the 3rd order PARAFC-Volterra model provided using the PARAFAC (PARAllel FACtor) tensor decomposition of the Volterra kernels of order higher than two of the classical Volterra model. The recursive stochastic algorithm ARGLS (Alternating RGLS) consists of the execution in an alternating way of the classical RGLS algorithm developed to identify the linear stochastic input-output models. The efficiency of the proposed identification approach is proved using Monte Carlo simulation on a nonlinear satellite channel.\",\"PeriodicalId\":149580,\"journal\":{\"name\":\"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD.2016.7473703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2016.7473703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将交替RGLS(递归广义最小二乘)算法推广到描述被AR(自回归)噪声破坏的随机非线性系统的降复杂度Volterra模型的识别中,以用于被ARMA(自回归移动平均)噪声破坏的系统。所使用的简化Volterra模型是使用PARAFAC (PARAllel FACtor)张量分解比经典Volterra模型高两个阶的Volterra核提供的三阶PARAFC-Volterra模型。递归随机算法交替RGLS (Alternating RGLS)是将经典RGLS算法交替执行,以识别线性随机输入输出模型。通过对非线性卫星信道的蒙特卡罗仿真,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of nonlinear stochastic systems described by PARAFAC-Volterra
In this paper we extend the Alternating RGLS (Recursive Generalized Least Square) algorithm proposed for the identification of the reduced complexity Volterra model describing stochastic nonlinear systems corrupted by AR (AutoRegressive) noise to case of systems corrupted by ARMA (AutoRegressive Moving Average) noise. The reduced Volterra model used is the 3rd order PARAFC-Volterra model provided using the PARAFAC (PARAllel FACtor) tensor decomposition of the Volterra kernels of order higher than two of the classical Volterra model. The recursive stochastic algorithm ARGLS (Alternating RGLS) consists of the execution in an alternating way of the classical RGLS algorithm developed to identify the linear stochastic input-output models. The efficiency of the proposed identification approach is proved using Monte Carlo simulation on a nonlinear satellite channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the distributed mean-variance paradigm Torque calibration with hysteresis brakes Identification of ARX Hammerstein Models based on Twin Support Vector Machine Regression Mean-field-type games on airline networks and airport queues: Braess paradox, its negation, and crowd effect Online policy iteration solution for dynamic graphical games
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1