二维小波变换算法的可扩展性:在粗粒度并行计算机上的分析和实验结果

Jamshed N. Pately, Ashfaq A. Khokharz, Leah H. Jamiesony
{"title":"二维小波变换算法的可扩展性:在粗粒度并行计算机上的分析和实验结果","authors":"Jamshed N. Pately, Ashfaq A. Khokharz, Leah H. Jamiesony","doi":"10.1109/VLSISP.1996.558370","DOIUrl":null,"url":null,"abstract":"We present analytical and experimental results for the scalability of 2-D discrete wavelet transform algorithms on coarse-grained parallel architectures. The principal operation in the 2-D DWT is the filtering operation used to implement the filter banks of the 2-D subband decomposition. We derive analytical results comparing time domain and frequency domain parallel algorithms for realizing the filter banks. Experiments on the Intel Paragon validate the analytical results. We demonstrate that there exist combinations of the machine size, image size, and wavelet size for which the time-domain algorithms outperform the frequency domain algorithms, and vice-versa.","PeriodicalId":290885,"journal":{"name":"VLSI Signal Processing, IX","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Scalability of 2-D wavelet transform algorithms: analytical and experimental results on coarse-grained parallel computers\",\"authors\":\"Jamshed N. Pately, Ashfaq A. Khokharz, Leah H. Jamiesony\",\"doi\":\"10.1109/VLSISP.1996.558370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present analytical and experimental results for the scalability of 2-D discrete wavelet transform algorithms on coarse-grained parallel architectures. The principal operation in the 2-D DWT is the filtering operation used to implement the filter banks of the 2-D subband decomposition. We derive analytical results comparing time domain and frequency domain parallel algorithms for realizing the filter banks. Experiments on the Intel Paragon validate the analytical results. We demonstrate that there exist combinations of the machine size, image size, and wavelet size for which the time-domain algorithms outperform the frequency domain algorithms, and vice-versa.\",\"PeriodicalId\":290885,\"journal\":{\"name\":\"VLSI Signal Processing, IX\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VLSI Signal Processing, IX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSISP.1996.558370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI Signal Processing, IX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSISP.1996.558370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

我们给出了二维离散小波变换算法在粗粒度并行结构上的可扩展性的分析和实验结果。二维DWT中的主要操作是用于实现二维子带分解的滤波器组的滤波操作。给出了实现滤波器组的时域和频域并行算法的比较分析结果。在Intel Paragon上的实验验证了分析结果。我们证明存在机器大小,图像大小和小波大小的组合,其中时域算法优于频域算法,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalability of 2-D wavelet transform algorithms: analytical and experimental results on coarse-grained parallel computers
We present analytical and experimental results for the scalability of 2-D discrete wavelet transform algorithms on coarse-grained parallel architectures. The principal operation in the 2-D DWT is the filtering operation used to implement the filter banks of the 2-D subband decomposition. We derive analytical results comparing time domain and frequency domain parallel algorithms for realizing the filter banks. Experiments on the Intel Paragon validate the analytical results. We demonstrate that there exist combinations of the machine size, image size, and wavelet size for which the time-domain algorithms outperform the frequency domain algorithms, and vice-versa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time MPEG-2 software decoding with a dual-issue RISC processor A chip set for a ray-casting engine An object based data cache with conflict free concurrent access as shared memory for a parallel DSP A 500 MHz, one volt, 16 by 16 bit multiplier for DSP cores A parallel architecture for rapid prototyping of mechatronic algorithms by exploiting implicit fine-grain parallelism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1