Hyunchul Lim, Ruidong Zhang, Samhita Pendyal, J. Jo, Cheng Zhang
{"title":"D-Touch:使用颈部可穿戴设备识别和预测细粒度手-脸触摸活动","authors":"Hyunchul Lim, Ruidong Zhang, Samhita Pendyal, J. Jo, Cheng Zhang","doi":"10.1145/3581641.3584063","DOIUrl":null,"url":null,"abstract":"This paper presents D-Touch, a neck-mounted wearable sensing system that can recognize and predict how a hand touches the face. It uses a neck-mounted infrared camera (IR), which takes pictures of the head from the neck. These IR camera images are processed and used to train a deep-learning model to recognize and predict touch time and positions. The study showed D-Touch distinguished 17 Facial related Activity (FrA), including 11 face touch positions and 6 other activities, with over 92.1% accuracy and predict the hand-touching T-zone from other FrA activities with an accuracy of 82.12% within 150 ms after the hand appeared in the camera. A study with 10 participants conducted in their homes without any constraints on participants showed that D-Touch can predict the hand-touching T-zone from other FrA activities with an accuracy of 72.3% within 150 ms after the camera saw the hand. Based on the study results, we further discuss the opportunities and challenges of deploying D-Touch in real-world scenarios.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D-Touch: Recognizing and Predicting Fine-grained Hand-face Touching Activities Using a Neck-mounted Wearable\",\"authors\":\"Hyunchul Lim, Ruidong Zhang, Samhita Pendyal, J. Jo, Cheng Zhang\",\"doi\":\"10.1145/3581641.3584063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents D-Touch, a neck-mounted wearable sensing system that can recognize and predict how a hand touches the face. It uses a neck-mounted infrared camera (IR), which takes pictures of the head from the neck. These IR camera images are processed and used to train a deep-learning model to recognize and predict touch time and positions. The study showed D-Touch distinguished 17 Facial related Activity (FrA), including 11 face touch positions and 6 other activities, with over 92.1% accuracy and predict the hand-touching T-zone from other FrA activities with an accuracy of 82.12% within 150 ms after the hand appeared in the camera. A study with 10 participants conducted in their homes without any constraints on participants showed that D-Touch can predict the hand-touching T-zone from other FrA activities with an accuracy of 72.3% within 150 ms after the camera saw the hand. Based on the study results, we further discuss the opportunities and challenges of deploying D-Touch in real-world scenarios.\",\"PeriodicalId\":118159,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Intelligent User Interfaces\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Intelligent User Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3581641.3584063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581641.3584063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
D-Touch: Recognizing and Predicting Fine-grained Hand-face Touching Activities Using a Neck-mounted Wearable
This paper presents D-Touch, a neck-mounted wearable sensing system that can recognize and predict how a hand touches the face. It uses a neck-mounted infrared camera (IR), which takes pictures of the head from the neck. These IR camera images are processed and used to train a deep-learning model to recognize and predict touch time and positions. The study showed D-Touch distinguished 17 Facial related Activity (FrA), including 11 face touch positions and 6 other activities, with over 92.1% accuracy and predict the hand-touching T-zone from other FrA activities with an accuracy of 82.12% within 150 ms after the hand appeared in the camera. A study with 10 participants conducted in their homes without any constraints on participants showed that D-Touch can predict the hand-touching T-zone from other FrA activities with an accuracy of 72.3% within 150 ms after the camera saw the hand. Based on the study results, we further discuss the opportunities and challenges of deploying D-Touch in real-world scenarios.