Andy Regensky, Simon Grosche, Jürgen Seiler, A. Kaup
{"title":"基于寄存器的Argmax计算实时频率选择重构","authors":"Andy Regensky, Simon Grosche, Jürgen Seiler, A. Kaup","doi":"10.1109/MMSP48831.2020.9287071","DOIUrl":null,"url":null,"abstract":"Frequency Selective Reconstruction (FSR) is a state-of-the-art algorithm for solving diverse image reconstruction tasks, where a subset of pixel values in the image is missing. However, it entails a high computational complexity due to its iterative, blockwise procedure to reconstruct the missing pixel values. Although the complexity of FSR can be considerably decreased by performing its computations in the frequency domain, the reconstruction procedure still takes multiple seconds up to multiple minutes depending on the parameterization. However, FSR has the potential for a massive parallelization greatly improving its reconstruction time. In this paper, we introduce a novel highly parallelized formulation of FSR adapted to the capabilities of modern GPUs and propose a considerably accelerated calculation of the inherent argmax calculation. Altogether, we achieve a 100-fold speed-up, which enables the usage of FSR for real-time applications.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real-Time Frequency Selective Reconstruction through Register-Based Argmax Calculation\",\"authors\":\"Andy Regensky, Simon Grosche, Jürgen Seiler, A. Kaup\",\"doi\":\"10.1109/MMSP48831.2020.9287071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequency Selective Reconstruction (FSR) is a state-of-the-art algorithm for solving diverse image reconstruction tasks, where a subset of pixel values in the image is missing. However, it entails a high computational complexity due to its iterative, blockwise procedure to reconstruct the missing pixel values. Although the complexity of FSR can be considerably decreased by performing its computations in the frequency domain, the reconstruction procedure still takes multiple seconds up to multiple minutes depending on the parameterization. However, FSR has the potential for a massive parallelization greatly improving its reconstruction time. In this paper, we introduce a novel highly parallelized formulation of FSR adapted to the capabilities of modern GPUs and propose a considerably accelerated calculation of the inherent argmax calculation. Altogether, we achieve a 100-fold speed-up, which enables the usage of FSR for real-time applications.\",\"PeriodicalId\":188283,\"journal\":{\"name\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP48831.2020.9287071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Frequency Selective Reconstruction through Register-Based Argmax Calculation
Frequency Selective Reconstruction (FSR) is a state-of-the-art algorithm for solving diverse image reconstruction tasks, where a subset of pixel values in the image is missing. However, it entails a high computational complexity due to its iterative, blockwise procedure to reconstruct the missing pixel values. Although the complexity of FSR can be considerably decreased by performing its computations in the frequency domain, the reconstruction procedure still takes multiple seconds up to multiple minutes depending on the parameterization. However, FSR has the potential for a massive parallelization greatly improving its reconstruction time. In this paper, we introduce a novel highly parallelized formulation of FSR adapted to the capabilities of modern GPUs and propose a considerably accelerated calculation of the inherent argmax calculation. Altogether, we achieve a 100-fold speed-up, which enables the usage of FSR for real-time applications.