改进语义分割应用中的深度神经网络容错性

Stéphane Burel, A. Evans, L. Anghel
{"title":"改进语义分割应用中的深度神经网络容错性","authors":"Stéphane Burel, A. Evans, L. Anghel","doi":"10.1109/DFT56152.2022.9962354","DOIUrl":null,"url":null,"abstract":"Semantic segmentation of images is essential for autonomous driving and modern DNNs now achieve high accuracy. Automotive systems must comply with safety standards, requiring hardware fault detection. We present an analysis of the effect of faults using Google’s DeepLabV3+ network processing an industrial data-set. A new symptom-based fault detection algorithm is shown to detect >99% of critical faults with zero false positives and a compute overhead of 0.2%. Further, these faults can be masked, virtually eliminating all critical errors. To the authors’ knowledge this is the first fault tolerance study of a DNN semantic segmentation application.","PeriodicalId":411011,"journal":{"name":"2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving DNN Fault Tolerance in Semantic Segmentation Applications\",\"authors\":\"Stéphane Burel, A. Evans, L. Anghel\",\"doi\":\"10.1109/DFT56152.2022.9962354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation of images is essential for autonomous driving and modern DNNs now achieve high accuracy. Automotive systems must comply with safety standards, requiring hardware fault detection. We present an analysis of the effect of faults using Google’s DeepLabV3+ network processing an industrial data-set. A new symptom-based fault detection algorithm is shown to detect >99% of critical faults with zero false positives and a compute overhead of 0.2%. Further, these faults can be masked, virtually eliminating all critical errors. To the authors’ knowledge this is the first fault tolerance study of a DNN semantic segmentation application.\",\"PeriodicalId\":411011,\"journal\":{\"name\":\"2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT56152.2022.9962354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT56152.2022.9962354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像的语义分割对于自动驾驶至关重要,现代深度神经网络已经达到了很高的精度。汽车系统必须符合安全标准,需要硬件故障检测。我们使用谷歌的DeepLabV3+网络处理工业数据集,对故障的影响进行了分析。提出了一种新的基于症状的故障检测算法,该算法可以检测出>99%的关键故障,并且没有误报,计算开销仅为0.2%。此外,这些错误可以被掩盖,实际上消除了所有关键错误。据作者所知,这是DNN语义分割应用程序的第一个容错研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving DNN Fault Tolerance in Semantic Segmentation Applications
Semantic segmentation of images is essential for autonomous driving and modern DNNs now achieve high accuracy. Automotive systems must comply with safety standards, requiring hardware fault detection. We present an analysis of the effect of faults using Google’s DeepLabV3+ network processing an industrial data-set. A new symptom-based fault detection algorithm is shown to detect >99% of critical faults with zero false positives and a compute overhead of 0.2%. Further, these faults can be masked, virtually eliminating all critical errors. To the authors’ knowledge this is the first fault tolerance study of a DNN semantic segmentation application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Degradation due to Interacting Adjacent Hot Pixels Preventing Soft Errors and Hardware Trojans in RISC-V Cores Cross-Correlation Approach to Detecting Issue Test Sites in Massive Parallel Testing Evaluation of the Effects of SEUs on Configuration Memories in FPGA Implemented QC-LDPC Decoders Evaluating Read Disturb Effect on RRAM based AI Accelerator with Multilevel States and Input Voltages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1