相关度和冗余度作为人类自主传感器融合的选择技术

Justin D. Brody, Anna M. R. Dixon, Daniel Donavanik, R. Robinson, W. Nothwang
{"title":"相关度和冗余度作为人类自主传感器融合的选择技术","authors":"Justin D. Brody, Anna M. R. Dixon, Daniel Donavanik, R. Robinson, W. Nothwang","doi":"10.1109/MFI.2017.8170409","DOIUrl":null,"url":null,"abstract":"Human-autonomy teaming using physiological sensors poses a novel sensor fusion problem due to the dynamic nature of the sensor models and the difficulty of modeling their temporal and inter-subject variability. Developing analytical models therefore requires defining objective criteria for selection and weighting of sensors under an appropriate fusion paradigm. We investigate a selection methodology grounded in two intuitions: 1) that maximizing the relevance between sensors and target classes will enhance overall performance within a given fusion scheme; and 2) that minimizing redundancy amongst the selected sensors will not harm fusion performance and may improve precision and recall. We apply these intuitions to a human-autonomy image classification task. Preliminary results indicate strong support for the relevance hypothesis and weaker effects for the redundancy hypothesis. This relationship and its application to human-autonomy sensor fusion are explored within a framework employing three common fusion methodologies: Naive Bayes fusion, Dempster-Shafer theory, and Dynamic Belief Fusion.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relevance and redundancy as selection techniques for human-autonomy sensor fusion\",\"authors\":\"Justin D. Brody, Anna M. R. Dixon, Daniel Donavanik, R. Robinson, W. Nothwang\",\"doi\":\"10.1109/MFI.2017.8170409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-autonomy teaming using physiological sensors poses a novel sensor fusion problem due to the dynamic nature of the sensor models and the difficulty of modeling their temporal and inter-subject variability. Developing analytical models therefore requires defining objective criteria for selection and weighting of sensors under an appropriate fusion paradigm. We investigate a selection methodology grounded in two intuitions: 1) that maximizing the relevance between sensors and target classes will enhance overall performance within a given fusion scheme; and 2) that minimizing redundancy amongst the selected sensors will not harm fusion performance and may improve precision and recall. We apply these intuitions to a human-autonomy image classification task. Preliminary results indicate strong support for the relevance hypothesis and weaker effects for the redundancy hypothesis. This relationship and its application to human-autonomy sensor fusion are explored within a framework employing three common fusion methodologies: Naive Bayes fusion, Dempster-Shafer theory, and Dynamic Belief Fusion.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于传感器模型的动态性以及对其时间和主体间可变性建模的困难,使用生理传感器的人类自主团队提出了一个新的传感器融合问题。因此,开发分析模型需要在适当的融合范式下定义选择和加权传感器的客观标准。我们研究了一种基于两个直觉的选择方法:1)在给定的融合方案中,最大化传感器和目标类别之间的相关性将提高整体性能;2)最小化所选传感器之间的冗余不会损害融合性能,并可能提高精度和召回率。我们将这些直觉应用于人类自主图像分类任务。初步结果表明相关性假设得到了较强的支持,冗余假设的影响较弱。这种关系及其在人类自主传感器融合中的应用在采用三种常见融合方法的框架内进行了探讨:朴素贝叶斯融合、Dempster-Shafer理论和动态信念融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relevance and redundancy as selection techniques for human-autonomy sensor fusion
Human-autonomy teaming using physiological sensors poses a novel sensor fusion problem due to the dynamic nature of the sensor models and the difficulty of modeling their temporal and inter-subject variability. Developing analytical models therefore requires defining objective criteria for selection and weighting of sensors under an appropriate fusion paradigm. We investigate a selection methodology grounded in two intuitions: 1) that maximizing the relevance between sensors and target classes will enhance overall performance within a given fusion scheme; and 2) that minimizing redundancy amongst the selected sensors will not harm fusion performance and may improve precision and recall. We apply these intuitions to a human-autonomy image classification task. Preliminary results indicate strong support for the relevance hypothesis and weaker effects for the redundancy hypothesis. This relationship and its application to human-autonomy sensor fusion are explored within a framework employing three common fusion methodologies: Naive Bayes fusion, Dempster-Shafer theory, and Dynamic Belief Fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep reinforcement learning algorithms for steering an underactuated ship Data analytics development of FDR (Flight Data Recorder) data for airline maintenance operations Underwater Terrain Navigation Using Standard Sea Charts and Magnetic Field Maps Musculoskeletal model of a pregnant woman considering stretched rectus abdominis and co-contraction muscle activation Compressive sensing based data collection in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1