使用机器学习方法和混合数据预测左侧桥练习的最大耐力时间

M. Akay, M. C. Yüksel, F. Abut, F. M. Taş, J. George
{"title":"使用机器学习方法和混合数据预测左侧桥练习的最大耐力时间","authors":"M. Akay, M. C. Yüksel, F. Abut, F. M. Taş, J. George","doi":"10.1109/CICN.2017.8319387","DOIUrl":null,"url":null,"abstract":"This study was carried out with the intention to create new models to predict the maximum endurance time for the left-side bridge exercise using machine learning methods and hybrid data. Particularly, four different methods including Multilayer Feed-Forward Artificial Neural Network (MFANN), Generalized Regression Neural Network (GRNN), Radial Basis Function Neural Network (RBFNN) and Single Decision Tree (SDT) have been used for model development. The dataset used to create the prediction models includes physiological, exercise and questionnaire data related to individuals who performed the left-side bridge exercise and completed the Perceived Activity Rating (PAR) and Perceived Functional Ability (PFA) questionnaires. To evaluate the performance of the models, two well-known metrics, namely Root Mean Square Error (RMSE) and Multiple Correlation Coefficient (R) have been used, whereas the generalization errors have been assessed using 10-fold cross validation. The best prediction performance among the models has been obtained by using MFANN along with the predictor variables gender, age, body mass index (BMI), the times to reach a rate of perceived exertion values of 7 and 8 (RPE-7 and RPE-8, respectively) and PAR, producing the lowest RMSE and the highest R with 10.61 seconds (s) and 0.92, respectively.","PeriodicalId":339750,"journal":{"name":"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting the maximum endurance time for left-side bridge exercise using machine learning methods and hybrid data\",\"authors\":\"M. Akay, M. C. Yüksel, F. Abut, F. M. Taş, J. George\",\"doi\":\"10.1109/CICN.2017.8319387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study was carried out with the intention to create new models to predict the maximum endurance time for the left-side bridge exercise using machine learning methods and hybrid data. Particularly, four different methods including Multilayer Feed-Forward Artificial Neural Network (MFANN), Generalized Regression Neural Network (GRNN), Radial Basis Function Neural Network (RBFNN) and Single Decision Tree (SDT) have been used for model development. The dataset used to create the prediction models includes physiological, exercise and questionnaire data related to individuals who performed the left-side bridge exercise and completed the Perceived Activity Rating (PAR) and Perceived Functional Ability (PFA) questionnaires. To evaluate the performance of the models, two well-known metrics, namely Root Mean Square Error (RMSE) and Multiple Correlation Coefficient (R) have been used, whereas the generalization errors have been assessed using 10-fold cross validation. The best prediction performance among the models has been obtained by using MFANN along with the predictor variables gender, age, body mass index (BMI), the times to reach a rate of perceived exertion values of 7 and 8 (RPE-7 and RPE-8, respectively) and PAR, producing the lowest RMSE and the highest R with 10.61 seconds (s) and 0.92, respectively.\",\"PeriodicalId\":339750,\"journal\":{\"name\":\"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN.2017.8319387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2017.8319387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在创建新模型,利用机器学习方法和混合数据来预测左侧桥锻炼的最大耐力时间。具体而言,采用多层前馈神经网络(MFANN)、广义回归神经网络(GRNN)、径向基函数神经网络(RBFNN)和单决策树(SDT)四种不同的方法进行模型开发。用于创建预测模型的数据集包括进行左侧桥运动并完成感知活动评级(PAR)和感知功能能力(PFA)问卷调查的个体的生理、运动和问卷数据。为了评估模型的性能,我们使用了两个众所周知的指标,即均方根误差(RMSE)和多元相关系数(R),而泛化误差则使用10倍交叉验证来评估。MFANN与预测变量性别、年龄、体重指数(BMI)、达到感知运动速率值7和8的时间(分别为RPE-7和RPE-8)和PAR的预测效果最好,RMSE最低,R最高,分别为10.61秒和0.92秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the maximum endurance time for left-side bridge exercise using machine learning methods and hybrid data
This study was carried out with the intention to create new models to predict the maximum endurance time for the left-side bridge exercise using machine learning methods and hybrid data. Particularly, four different methods including Multilayer Feed-Forward Artificial Neural Network (MFANN), Generalized Regression Neural Network (GRNN), Radial Basis Function Neural Network (RBFNN) and Single Decision Tree (SDT) have been used for model development. The dataset used to create the prediction models includes physiological, exercise and questionnaire data related to individuals who performed the left-side bridge exercise and completed the Perceived Activity Rating (PAR) and Perceived Functional Ability (PFA) questionnaires. To evaluate the performance of the models, two well-known metrics, namely Root Mean Square Error (RMSE) and Multiple Correlation Coefficient (R) have been used, whereas the generalization errors have been assessed using 10-fold cross validation. The best prediction performance among the models has been obtained by using MFANN along with the predictor variables gender, age, body mass index (BMI), the times to reach a rate of perceived exertion values of 7 and 8 (RPE-7 and RPE-8, respectively) and PAR, producing the lowest RMSE and the highest R with 10.61 seconds (s) and 0.92, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compact dual band printed planar inverted-F antenna for wireless communications Implementing Diffie-Hellman key exchange method on logical key hierarchy for secure broadcast transmission Data analytics using cloud computing Feature selection for protein dihedral angle prediction Facial expression recognition using enhanced local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1