{"title":"深度学习辅助OAM模式解复用","authors":"Venugopal Raskatla, Vijay Kumar","doi":"10.1117/12.2615170","DOIUrl":null,"url":null,"abstract":"Orbital angular momentum (OAM) beams have the potential to increase the information-carrying capacity because of the extra degrees of freedom associated with them. Traditional methods for mode detection and de-multiplexing are complex and require expensive optical hardware. We propose a very simple and cost effective deep learning based model for demultiplexing OAM modes at the receiver. In this method we have used a random phase mask of known inhomogeneity to generate a scattered field of OAM mode and the intensity images of these scattered field are used as an input to the Convolutional Neural Network. The model is trained for various Laguerre-Gaussian (𝐿𝐺𝑝𝑙) modes carrying OAM with 𝑝 = 0 and 𝑙 = 1,2,3,4,5,6,7,8. The model is tested for various set of images and the overall accuracy of each dataset is <99%. To demonstrate the proof of concept we simulated an experiment to generate the speckle field at the receiver of optical communication system for demultiplexing OAM modes and decoding the 3-bit information.","PeriodicalId":250235,"journal":{"name":"International Conference on Correlation Optics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep learning assisted OAM modes demultiplexing\",\"authors\":\"Venugopal Raskatla, Vijay Kumar\",\"doi\":\"10.1117/12.2615170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orbital angular momentum (OAM) beams have the potential to increase the information-carrying capacity because of the extra degrees of freedom associated with them. Traditional methods for mode detection and de-multiplexing are complex and require expensive optical hardware. We propose a very simple and cost effective deep learning based model for demultiplexing OAM modes at the receiver. In this method we have used a random phase mask of known inhomogeneity to generate a scattered field of OAM mode and the intensity images of these scattered field are used as an input to the Convolutional Neural Network. The model is trained for various Laguerre-Gaussian (𝐿𝐺𝑝𝑙) modes carrying OAM with 𝑝 = 0 and 𝑙 = 1,2,3,4,5,6,7,8. The model is tested for various set of images and the overall accuracy of each dataset is <99%. To demonstrate the proof of concept we simulated an experiment to generate the speckle field at the receiver of optical communication system for demultiplexing OAM modes and decoding the 3-bit information.\",\"PeriodicalId\":250235,\"journal\":{\"name\":\"International Conference on Correlation Optics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Correlation Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2615170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Correlation Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2615170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Orbital angular momentum (OAM) beams have the potential to increase the information-carrying capacity because of the extra degrees of freedom associated with them. Traditional methods for mode detection and de-multiplexing are complex and require expensive optical hardware. We propose a very simple and cost effective deep learning based model for demultiplexing OAM modes at the receiver. In this method we have used a random phase mask of known inhomogeneity to generate a scattered field of OAM mode and the intensity images of these scattered field are used as an input to the Convolutional Neural Network. The model is trained for various Laguerre-Gaussian (𝐿𝐺𝑝𝑙) modes carrying OAM with 𝑝 = 0 and 𝑙 = 1,2,3,4,5,6,7,8. The model is tested for various set of images and the overall accuracy of each dataset is <99%. To demonstrate the proof of concept we simulated an experiment to generate the speckle field at the receiver of optical communication system for demultiplexing OAM modes and decoding the 3-bit information.