P. Phalguni, K. Ganapathi, V. Madumbu, R. Rajendran, S. David
{"title":"基于TI OMAP-L138的交通标志自动识别系统的设计与实现","authors":"P. Phalguni, K. Ganapathi, V. Madumbu, R. Rajendran, S. David","doi":"10.1109/ICIT.2013.6505826","DOIUrl":null,"url":null,"abstract":"This paper discusses the design and processor implementation of a system that detects and recognizes traffic signs present in an image. Morphological operators, segmentation and contour detection are used for isolating the Regions of Interest (ROIs) from the input image, while five methods - Hu moment matching, histogram based matching, Histogram of Gradients based matching, Euclidean distance based matching and template matching are used for recognizing the traffic sign in the ROI. A classification system based on the shape of the sign is adopted. The performance of the various recognition methods is evaluated by comparing the number of clock cycles used to run the algorithm on the Texas Instruments TMS320C6748 processor. The use of multiple methods for recognizing the traffic signs allows for customization based on the performance of the methods for different datasets. The experiments show that the developed system is robust and well-suited for real-time applications and achieved recognition and classification accuracies of upto 90%.","PeriodicalId":192784,"journal":{"name":"2013 IEEE International Conference on Industrial Technology (ICIT)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design and implementation of an automatic traffic sign recognition system on TI OMAP-L138\",\"authors\":\"P. Phalguni, K. Ganapathi, V. Madumbu, R. Rajendran, S. David\",\"doi\":\"10.1109/ICIT.2013.6505826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the design and processor implementation of a system that detects and recognizes traffic signs present in an image. Morphological operators, segmentation and contour detection are used for isolating the Regions of Interest (ROIs) from the input image, while five methods - Hu moment matching, histogram based matching, Histogram of Gradients based matching, Euclidean distance based matching and template matching are used for recognizing the traffic sign in the ROI. A classification system based on the shape of the sign is adopted. The performance of the various recognition methods is evaluated by comparing the number of clock cycles used to run the algorithm on the Texas Instruments TMS320C6748 processor. The use of multiple methods for recognizing the traffic signs allows for customization based on the performance of the methods for different datasets. The experiments show that the developed system is robust and well-suited for real-time applications and achieved recognition and classification accuracies of upto 90%.\",\"PeriodicalId\":192784,\"journal\":{\"name\":\"2013 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2013.6505826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2013.6505826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and implementation of an automatic traffic sign recognition system on TI OMAP-L138
This paper discusses the design and processor implementation of a system that detects and recognizes traffic signs present in an image. Morphological operators, segmentation and contour detection are used for isolating the Regions of Interest (ROIs) from the input image, while five methods - Hu moment matching, histogram based matching, Histogram of Gradients based matching, Euclidean distance based matching and template matching are used for recognizing the traffic sign in the ROI. A classification system based on the shape of the sign is adopted. The performance of the various recognition methods is evaluated by comparing the number of clock cycles used to run the algorithm on the Texas Instruments TMS320C6748 processor. The use of multiple methods for recognizing the traffic signs allows for customization based on the performance of the methods for different datasets. The experiments show that the developed system is robust and well-suited for real-time applications and achieved recognition and classification accuracies of upto 90%.