提高AES算法在Pascal GPU架构下的实际吞吐量

Ahmed A. Abdelrahman, H. Dahshan, Goda Ismaeel Salama
{"title":"提高AES算法在Pascal GPU架构下的实际吞吐量","authors":"Ahmed A. Abdelrahman, H. Dahshan, Goda Ismaeel Salama","doi":"10.1109/ICSRS.2018.8688724","DOIUrl":null,"url":null,"abstract":"The Advanced Encryption Standard (AES) is strongly used in different security levels of data communication as it has higher efficiency and stronger security compared with other encryption algorithms. Graphics Processing Unit (GPU) is one of the most important platforms used for enhancing AES algorithm Performance. Unfortunately, the AES actual throughput Over GPU can hardly improve Due to the CPU-GPU data transfer overhead. In this paper, the AES-ECB algorithm is implemented on NVIDIA GTX 1080 (Pascal architecture). We used Two different techniques to overcome data transfer overhead including the streaming technique and unified memory technique. Our results show that the actual throughput of the AES using the streaming technique equals 80Gbps which is about 2 times greater than using the unified memory technique. Furthermore, we achieved 280 Gbps Kernel throughput using 32bytes/thread granularity and shared memory key storage.","PeriodicalId":166131,"journal":{"name":"2018 3rd International Conference on System Reliability and Safety (ICSRS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Enhancing the Actual Throughput of the AES Algorithm on the Pascal GPU Architecture\",\"authors\":\"Ahmed A. Abdelrahman, H. Dahshan, Goda Ismaeel Salama\",\"doi\":\"10.1109/ICSRS.2018.8688724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Advanced Encryption Standard (AES) is strongly used in different security levels of data communication as it has higher efficiency and stronger security compared with other encryption algorithms. Graphics Processing Unit (GPU) is one of the most important platforms used for enhancing AES algorithm Performance. Unfortunately, the AES actual throughput Over GPU can hardly improve Due to the CPU-GPU data transfer overhead. In this paper, the AES-ECB algorithm is implemented on NVIDIA GTX 1080 (Pascal architecture). We used Two different techniques to overcome data transfer overhead including the streaming technique and unified memory technique. Our results show that the actual throughput of the AES using the streaming technique equals 80Gbps which is about 2 times greater than using the unified memory technique. Furthermore, we achieved 280 Gbps Kernel throughput using 32bytes/thread granularity and shared memory key storage.\",\"PeriodicalId\":166131,\"journal\":{\"name\":\"2018 3rd International Conference on System Reliability and Safety (ICSRS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on System Reliability and Safety (ICSRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSRS.2018.8688724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on System Reliability and Safety (ICSRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSRS.2018.8688724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

与其他加密算法相比,AES (Advanced Encryption Standard)具有更高的效率和更强的安全性,在不同安全级别的数据通信中被广泛使用。图形处理器(Graphics Processing Unit, GPU)是提高AES算法性能的重要平台之一。不幸的是,由于CPU-GPU数据传输开销,AES在GPU上的实际吞吐量几乎无法提高。本文在NVIDIA GTX 1080 (Pascal架构)上实现了AES-ECB算法。我们使用了两种不同的技术来克服数据传输开销,包括流技术和统一内存技术。我们的结果表明,使用流技术的AES的实际吞吐量为80Gbps,大约是使用统一内存技术的2倍。此外,我们使用32字节/线程粒度和共享内存密钥存储实现了280 Gbps的内核吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the Actual Throughput of the AES Algorithm on the Pascal GPU Architecture
The Advanced Encryption Standard (AES) is strongly used in different security levels of data communication as it has higher efficiency and stronger security compared with other encryption algorithms. Graphics Processing Unit (GPU) is one of the most important platforms used for enhancing AES algorithm Performance. Unfortunately, the AES actual throughput Over GPU can hardly improve Due to the CPU-GPU data transfer overhead. In this paper, the AES-ECB algorithm is implemented on NVIDIA GTX 1080 (Pascal architecture). We used Two different techniques to overcome data transfer overhead including the streaming technique and unified memory technique. Our results show that the actual throughput of the AES using the streaming technique equals 80Gbps which is about 2 times greater than using the unified memory technique. Furthermore, we achieved 280 Gbps Kernel throughput using 32bytes/thread granularity and shared memory key storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design for Reliability with Early Design Approach Using Phenomenology to Assess Risk Perception of a New Technology in Public Transportation the Case of the Autonomous Vehicles as Mobility as a Service (MaaS) in Switzerland Intelligent Fault Diagnosis for Power Transformer Based on DGA Data Using Support Vector Machine (SVM) Reliability Analysis for High-Density PCA After Multiple BGA Reworks A Critical Incident Drill Based on Service Design to Improve Digitization Acceptance of Processes in Air Traffic Management an Organizational Test Conducted at Skyguide Involving an External IT Provider
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1