基于SIFT的动态对象理解深度学习方法

Yuan-Tsung Chang, T. Shih
{"title":"基于SIFT的动态对象理解深度学习方法","authors":"Yuan-Tsung Chang, T. Shih","doi":"10.1109/Ubi-Media.2019.00033","DOIUrl":null,"url":null,"abstract":"Deep learning is a method that is very commonly used in image recognition. We use the SIFT method to extract feature points, so that the machine can detect the objects in the motion images and they can be integrated into the operation of the robot arm to judge and capture specific objects. This method is also used to detect whether the parameters of the object meet the predetermined values. It will provide a warning if the predetermined values are not met. This can be used to identify the good and defective products on the production line. In the CNN database we have trained more than 30,000 images and improved the last step of SIFT algorithm to demonstrate that our new method can achieve better accuracy.","PeriodicalId":259542,"journal":{"name":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Deep Learning Approach for Dynamic Object Understanding Using SIFT\",\"authors\":\"Yuan-Tsung Chang, T. Shih\",\"doi\":\"10.1109/Ubi-Media.2019.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is a method that is very commonly used in image recognition. We use the SIFT method to extract feature points, so that the machine can detect the objects in the motion images and they can be integrated into the operation of the robot arm to judge and capture specific objects. This method is also used to detect whether the parameters of the object meet the predetermined values. It will provide a warning if the predetermined values are not met. This can be used to identify the good and defective products on the production line. In the CNN database we have trained more than 30,000 images and improved the last step of SIFT algorithm to demonstrate that our new method can achieve better accuracy.\",\"PeriodicalId\":259542,\"journal\":{\"name\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Ubi-Media.2019.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Ubi-Media.2019.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习是一种在图像识别中非常常用的方法。我们使用SIFT方法提取特征点,使机器能够检测运动图像中的物体,并将其整合到机械臂的操作中,对特定物体进行判断和捕获。该方法还用于检测目标参数是否满足预定值。如果不满足预定值,它将提供警告。这可以用来识别生产线上的良品和次品。在CNN数据库中,我们训练了3万多张图像,并对SIFT算法的最后一步进行了改进,证明我们的新方法可以达到更好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Learning Approach for Dynamic Object Understanding Using SIFT
Deep learning is a method that is very commonly used in image recognition. We use the SIFT method to extract feature points, so that the machine can detect the objects in the motion images and they can be integrated into the operation of the robot arm to judge and capture specific objects. This method is also used to detect whether the parameters of the object meet the predetermined values. It will provide a warning if the predetermined values are not met. This can be used to identify the good and defective products on the production line. In the CNN database we have trained more than 30,000 images and improved the last step of SIFT algorithm to demonstrate that our new method can achieve better accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Target-Monitoring Learning Companion Design DeepBonds: A Deep Learning Approach to Predicting United States Treasury Yield Clinically Applicable Deep Learning for Diagnosis of Diabetic Retinopathy Markerless Indoor/Outdoor Augmented Reality Navigation Device Based on ORB-Visual-Odometry Positioning Estimation and Wall-Floor-Boundary Image Registration [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1