一种用于自主机器人阵列雷达传感的增强MUSIC DoA扫描方案

Kuan-Ying Chang, Kuan-Ting Chen, W. Ma, Y. Hwang
{"title":"一种用于自主机器人阵列雷达传感的增强MUSIC DoA扫描方案","authors":"Kuan-Ying Chang, Kuan-Ting Chen, W. Ma, Y. Hwang","doi":"10.1109/AICAS.2019.8771584","DOIUrl":null,"url":null,"abstract":"In this paper, we present an enhanced MUltiple SIgnal Classification (MUSIC) scheme for Direction of Arrival (DoA) scanning using a linear antenna array system. The goal is to construct an obstruction map based on the DoA scanning results for an autonomous mover when navigating in a pedestrian rich environment. A low complexity DoA estimation scheme, which eliminates the requirement of a computationally expensive Eigen Decomposition (ED) in conventional MUSIC algorithm, is developed. An Orthogonal Projection Matrix (OPM) scheme is used. Furthermore, a QR decomposition method is employed to implement the pseudo inverse matrix calculation required in the OPM scheme. This leads to a very computing efficient approach and facilitates real time implementation in hardware accelerators. The simulation results show that the proposed scheme can perform comparably to the conventional scheme at a much lower computing complexity.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Enhanced MUSIC DoA Scanning Scheme for Array Radar Sensing in Autonomous Movers\",\"authors\":\"Kuan-Ying Chang, Kuan-Ting Chen, W. Ma, Y. Hwang\",\"doi\":\"10.1109/AICAS.2019.8771584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an enhanced MUltiple SIgnal Classification (MUSIC) scheme for Direction of Arrival (DoA) scanning using a linear antenna array system. The goal is to construct an obstruction map based on the DoA scanning results for an autonomous mover when navigating in a pedestrian rich environment. A low complexity DoA estimation scheme, which eliminates the requirement of a computationally expensive Eigen Decomposition (ED) in conventional MUSIC algorithm, is developed. An Orthogonal Projection Matrix (OPM) scheme is used. Furthermore, a QR decomposition method is employed to implement the pseudo inverse matrix calculation required in the OPM scheme. This leads to a very computing efficient approach and facilitates real time implementation in hardware accelerators. The simulation results show that the proposed scheme can perform comparably to the conventional scheme at a much lower computing complexity.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们提出了一种增强的多信号分类(MUSIC)方案,用于线性天线阵列系统的到达方向(DoA)扫描。目标是基于DoA扫描结果,为自主移动机器人在行人丰富的环境中导航时构建障碍物地图。提出了一种低复杂度的DoA估计方案,消除了传统MUSIC算法中计算量大的特征分解(ED)的要求。采用正交投影矩阵(OPM)格式。此外,采用QR分解方法实现了OPM方案所需的伪逆矩阵计算。这导致了一种非常有效的计算方法,并促进了硬件加速器中的实时实现。仿真结果表明,该方案在较低的计算复杂度下具有与传统方案相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Enhanced MUSIC DoA Scanning Scheme for Array Radar Sensing in Autonomous Movers
In this paper, we present an enhanced MUltiple SIgnal Classification (MUSIC) scheme for Direction of Arrival (DoA) scanning using a linear antenna array system. The goal is to construct an obstruction map based on the DoA scanning results for an autonomous mover when navigating in a pedestrian rich environment. A low complexity DoA estimation scheme, which eliminates the requirement of a computationally expensive Eigen Decomposition (ED) in conventional MUSIC algorithm, is developed. An Orthogonal Projection Matrix (OPM) scheme is used. Furthermore, a QR decomposition method is employed to implement the pseudo inverse matrix calculation required in the OPM scheme. This leads to a very computing efficient approach and facilitates real time implementation in hardware accelerators. The simulation results show that the proposed scheme can perform comparably to the conventional scheme at a much lower computing complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1