{"title":"一种用于自主机器人阵列雷达传感的增强MUSIC DoA扫描方案","authors":"Kuan-Ying Chang, Kuan-Ting Chen, W. Ma, Y. Hwang","doi":"10.1109/AICAS.2019.8771584","DOIUrl":null,"url":null,"abstract":"In this paper, we present an enhanced MUltiple SIgnal Classification (MUSIC) scheme for Direction of Arrival (DoA) scanning using a linear antenna array system. The goal is to construct an obstruction map based on the DoA scanning results for an autonomous mover when navigating in a pedestrian rich environment. A low complexity DoA estimation scheme, which eliminates the requirement of a computationally expensive Eigen Decomposition (ED) in conventional MUSIC algorithm, is developed. An Orthogonal Projection Matrix (OPM) scheme is used. Furthermore, a QR decomposition method is employed to implement the pseudo inverse matrix calculation required in the OPM scheme. This leads to a very computing efficient approach and facilitates real time implementation in hardware accelerators. The simulation results show that the proposed scheme can perform comparably to the conventional scheme at a much lower computing complexity.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Enhanced MUSIC DoA Scanning Scheme for Array Radar Sensing in Autonomous Movers\",\"authors\":\"Kuan-Ying Chang, Kuan-Ting Chen, W. Ma, Y. Hwang\",\"doi\":\"10.1109/AICAS.2019.8771584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an enhanced MUltiple SIgnal Classification (MUSIC) scheme for Direction of Arrival (DoA) scanning using a linear antenna array system. The goal is to construct an obstruction map based on the DoA scanning results for an autonomous mover when navigating in a pedestrian rich environment. A low complexity DoA estimation scheme, which eliminates the requirement of a computationally expensive Eigen Decomposition (ED) in conventional MUSIC algorithm, is developed. An Orthogonal Projection Matrix (OPM) scheme is used. Furthermore, a QR decomposition method is employed to implement the pseudo inverse matrix calculation required in the OPM scheme. This leads to a very computing efficient approach and facilitates real time implementation in hardware accelerators. The simulation results show that the proposed scheme can perform comparably to the conventional scheme at a much lower computing complexity.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Enhanced MUSIC DoA Scanning Scheme for Array Radar Sensing in Autonomous Movers
In this paper, we present an enhanced MUltiple SIgnal Classification (MUSIC) scheme for Direction of Arrival (DoA) scanning using a linear antenna array system. The goal is to construct an obstruction map based on the DoA scanning results for an autonomous mover when navigating in a pedestrian rich environment. A low complexity DoA estimation scheme, which eliminates the requirement of a computationally expensive Eigen Decomposition (ED) in conventional MUSIC algorithm, is developed. An Orthogonal Projection Matrix (OPM) scheme is used. Furthermore, a QR decomposition method is employed to implement the pseudo inverse matrix calculation required in the OPM scheme. This leads to a very computing efficient approach and facilitates real time implementation in hardware accelerators. The simulation results show that the proposed scheme can perform comparably to the conventional scheme at a much lower computing complexity.