{"title":"通过使用最坏情况距离考虑制造公差的设计验证","authors":"H. Graeb, Claudia U. Wieser, K. Antreich","doi":"10.1109/EURDAC.1992.246260","DOIUrl":null,"url":null,"abstract":"A new method for design verification on circuit level considering the inevitable manufacturing tolerances is presented. It is based on a specific backward evaluation of performance specifications, which can be done efficiently with a sequential quadratic programming method using standard simulation tools. The specific backward evaluation yields exact worst-case parameter sets and corresponding worst-case distances for all specifications separately. Automatic circuit quality analysis enables a detailed design verification and supports the circuit design process by planning aids for a design step. The various features of the method are illustrated using a small tutorial circuit example. A practical example of an integrated CMOS analog circuit proves the efficiency of the new approach.<<ETX>>","PeriodicalId":218056,"journal":{"name":"Proceedings EURO-DAC '92: European Design Automation Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design verification considering manufacturing tolerances by using worst-case distances\",\"authors\":\"H. Graeb, Claudia U. Wieser, K. Antreich\",\"doi\":\"10.1109/EURDAC.1992.246260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for design verification on circuit level considering the inevitable manufacturing tolerances is presented. It is based on a specific backward evaluation of performance specifications, which can be done efficiently with a sequential quadratic programming method using standard simulation tools. The specific backward evaluation yields exact worst-case parameter sets and corresponding worst-case distances for all specifications separately. Automatic circuit quality analysis enables a detailed design verification and supports the circuit design process by planning aids for a design step. The various features of the method are illustrated using a small tutorial circuit example. A practical example of an integrated CMOS analog circuit proves the efficiency of the new approach.<<ETX>>\",\"PeriodicalId\":218056,\"journal\":{\"name\":\"Proceedings EURO-DAC '92: European Design Automation Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings EURO-DAC '92: European Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURDAC.1992.246260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings EURO-DAC '92: European Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURDAC.1992.246260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design verification considering manufacturing tolerances by using worst-case distances
A new method for design verification on circuit level considering the inevitable manufacturing tolerances is presented. It is based on a specific backward evaluation of performance specifications, which can be done efficiently with a sequential quadratic programming method using standard simulation tools. The specific backward evaluation yields exact worst-case parameter sets and corresponding worst-case distances for all specifications separately. Automatic circuit quality analysis enables a detailed design verification and supports the circuit design process by planning aids for a design step. The various features of the method are illustrated using a small tutorial circuit example. A practical example of an integrated CMOS analog circuit proves the efficiency of the new approach.<>