脑机接口中学科间分类的自适应精度加权集成

Sami Dalhoumi, G. Dray, J. Montmain, G. Derosière, S. Perrey
{"title":"脑机接口中学科间分类的自适应精度加权集成","authors":"Sami Dalhoumi, G. Dray, J. Montmain, G. Derosière, S. Perrey","doi":"10.1109/NER.2015.7146576","DOIUrl":null,"url":null,"abstract":"Learning from other subjects and/or sessions led to considerable reduction of calibration time in EEG-based BCIs. However, such learning scheme is not straightforward because of the non-stationary nature of EEG signals. In this paper, we propose an adaptive accuracy-weighted ensemble (AAWE) approach that allows tracking non-stationarity in EEG signals and effectively learning from other subjects. It consists of an ensemble of classifiers, each of which is trained using data recorded from one BCI user. Classifiers' weights are initialized according to their accuracy in classifying calibration data of current BCI user. These weights are updated using ensemble decision during feedback phase, when there is no information about true class labels. The effectiveness of our approach is demonstrated through an empirical comparison with other state of the art classifiers combination strategies.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An adaptive accuracy-weighted ensemble for inter-subjects classification in brain-computer interfacing\",\"authors\":\"Sami Dalhoumi, G. Dray, J. Montmain, G. Derosière, S. Perrey\",\"doi\":\"10.1109/NER.2015.7146576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning from other subjects and/or sessions led to considerable reduction of calibration time in EEG-based BCIs. However, such learning scheme is not straightforward because of the non-stationary nature of EEG signals. In this paper, we propose an adaptive accuracy-weighted ensemble (AAWE) approach that allows tracking non-stationarity in EEG signals and effectively learning from other subjects. It consists of an ensemble of classifiers, each of which is trained using data recorded from one BCI user. Classifiers' weights are initialized according to their accuracy in classifying calibration data of current BCI user. These weights are updated using ensemble decision during feedback phase, when there is no information about true class labels. The effectiveness of our approach is demonstrated through an empirical comparison with other state of the art classifiers combination strategies.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

从其他受试者和/或会议中学习可以大大减少基于脑电图的脑机接口的校准时间。然而,由于脑电信号的非平稳特性,这种学习方案并不简单。在本文中,我们提出了一种自适应精度加权集成(AAWE)方法,该方法可以跟踪脑电图信号的非平稳性并有效地从其他受试者中学习。它由一组分类器组成,每个分类器都使用从一个BCI用户记录的数据进行训练。根据分类器对当前BCI用户校准数据的分类精度初始化分类器的权重。当没有关于真实类标签的信息时,在反馈阶段使用集成决策更新这些权重。通过与其他最先进的分类器组合策略的经验比较,证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An adaptive accuracy-weighted ensemble for inter-subjects classification in brain-computer interfacing
Learning from other subjects and/or sessions led to considerable reduction of calibration time in EEG-based BCIs. However, such learning scheme is not straightforward because of the non-stationary nature of EEG signals. In this paper, we propose an adaptive accuracy-weighted ensemble (AAWE) approach that allows tracking non-stationarity in EEG signals and effectively learning from other subjects. It consists of an ensemble of classifiers, each of which is trained using data recorded from one BCI user. Classifiers' weights are initialized according to their accuracy in classifying calibration data of current BCI user. These weights are updated using ensemble decision during feedback phase, when there is no information about true class labels. The effectiveness of our approach is demonstrated through an empirical comparison with other state of the art classifiers combination strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iNODE in-vivo testing for selective vagus nerve recording and stimulation Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity Fast calibration of a thirteen-command BCI by simulating SSVEPs from trains of transient VEPs - towards time-domain SSVEP BCI paradigms A hybrid NMES-exoskeleton for real objects interaction Computationally efficient, configurable, causal, real-time phase detection applied to local field potential oscillations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1