云数据中心优化的节能启发式方法

S. Saxena, Mohammad Zubair Khan, Ravendra Singh
{"title":"云数据中心优化的节能启发式方法","authors":"S. Saxena, Mohammad Zubair Khan, Ravendra Singh","doi":"10.1109/SMART46866.2019.9117280","DOIUrl":null,"url":null,"abstract":"In the current scenario the demand for high performance computing system increases day by day to achieve maximum computation in minimum time. Rapid growth of Internet or Internet based services, increased the interest in network based computing or on-demand computing systems like cloud computing system. High computing servers are being deployed in large quantity for cloud computing in form of data Centers through which many different services on internet are provide to the cloud users in a very smooth and efficient manner. A large distributed system is described as a data center that includes a huge quantity of computing servers connected by an efficient network. So the consumption of energy in such data centers is enormously very high. Not only the maintenance of the data centers are too exorbitant, but also socially very harmful. High vitality costs and immense carbon footprints are brought in these data centers because the servers needed a substantial amount of electricity for their computation as well as for their cooling. As cost of energy increases and availability decreases, focus should be shifted towards the optimization of data centre servers for best performance alone with the policies of less energy consumption to justify the level of service performance with social impact. So in this paper we proposed energy aware consolidation technique for cloud data centers based on prediction of future client's requests to increase the utilization of computing servers as per request of users/clients which associated some demand of cloud resources for maintain the power consumption in cloud.","PeriodicalId":328124,"journal":{"name":"2019 8th International Conference System Modeling and Advancement in Research Trends (SMART)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Saving Heuristics for Optimization of Cloud Data Center\",\"authors\":\"S. Saxena, Mohammad Zubair Khan, Ravendra Singh\",\"doi\":\"10.1109/SMART46866.2019.9117280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current scenario the demand for high performance computing system increases day by day to achieve maximum computation in minimum time. Rapid growth of Internet or Internet based services, increased the interest in network based computing or on-demand computing systems like cloud computing system. High computing servers are being deployed in large quantity for cloud computing in form of data Centers through which many different services on internet are provide to the cloud users in a very smooth and efficient manner. A large distributed system is described as a data center that includes a huge quantity of computing servers connected by an efficient network. So the consumption of energy in such data centers is enormously very high. Not only the maintenance of the data centers are too exorbitant, but also socially very harmful. High vitality costs and immense carbon footprints are brought in these data centers because the servers needed a substantial amount of electricity for their computation as well as for their cooling. As cost of energy increases and availability decreases, focus should be shifted towards the optimization of data centre servers for best performance alone with the policies of less energy consumption to justify the level of service performance with social impact. So in this paper we proposed energy aware consolidation technique for cloud data centers based on prediction of future client's requests to increase the utilization of computing servers as per request of users/clients which associated some demand of cloud resources for maintain the power consumption in cloud.\",\"PeriodicalId\":328124,\"journal\":{\"name\":\"2019 8th International Conference System Modeling and Advancement in Research Trends (SMART)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference System Modeling and Advancement in Research Trends (SMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMART46866.2019.9117280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference System Modeling and Advancement in Research Trends (SMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMART46866.2019.9117280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当前的场景中,对高性能计算系统的需求日益增加,需要在最短的时间内实现最大的计算量。互联网或基于互联网的服务的快速发展,增加了人们对基于网络的计算或云计算等按需计算系统的兴趣。高计算服务器以数据中心的形式被大量部署用于云计算,通过这些服务器,互联网上的许多不同服务以非常流畅和高效的方式提供给云用户。一个大型分布式系统被描述为一个数据中心,它包括大量的计算服务器,通过一个高效的网络连接。所以这样的数据中心的能源消耗是非常高的。不仅数据中心的维护费用过高,而且对社会也非常有害。由于服务器需要大量的电力来进行计算和冷却,这些数据中心带来了高昂的活力成本和巨大的碳足迹。随着能源成本的增加和可用性的降低,应该将重点转向数据中心服务器的优化,以获得最佳性能,同时采用更少能源消耗的策略,以证明服务性能水平具有社会影响。因此,本文提出了一种基于预测未来客户端请求的云数据中心能源感知整合技术,根据用户/客户端的请求来提高计算服务器的利用率,从而关联一定的云资源需求来维持云中的功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy Saving Heuristics for Optimization of Cloud Data Center
In the current scenario the demand for high performance computing system increases day by day to achieve maximum computation in minimum time. Rapid growth of Internet or Internet based services, increased the interest in network based computing or on-demand computing systems like cloud computing system. High computing servers are being deployed in large quantity for cloud computing in form of data Centers through which many different services on internet are provide to the cloud users in a very smooth and efficient manner. A large distributed system is described as a data center that includes a huge quantity of computing servers connected by an efficient network. So the consumption of energy in such data centers is enormously very high. Not only the maintenance of the data centers are too exorbitant, but also socially very harmful. High vitality costs and immense carbon footprints are brought in these data centers because the servers needed a substantial amount of electricity for their computation as well as for their cooling. As cost of energy increases and availability decreases, focus should be shifted towards the optimization of data centre servers for best performance alone with the policies of less energy consumption to justify the level of service performance with social impact. So in this paper we proposed energy aware consolidation technique for cloud data centers based on prediction of future client's requests to increase the utilization of computing servers as per request of users/clients which associated some demand of cloud resources for maintain the power consumption in cloud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronous Link Converter based Scheme of Harmonic Filtration for Non-Linear Load A Conceptual Design to Encourage Sustainable Grocery Shopping: A Perspective in Bangladesh Plant Diseases Recognition Using Machine Learning Implementation of Machine Learning to Detect Hate Speech in Bangla Language Role of Internet of Things in Shaping Cities of Rajasthan as Smart Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1