结合激光雷达和声纳测绘部分淹没的基础设施

Alexander Thoms, Gabriel Earle, Nicholas Charron, Sven Malama, S. Narasimhan
{"title":"结合激光雷达和声纳测绘部分淹没的基础设施","authors":"Alexander Thoms, Gabriel Earle, Nicholas Charron, Sven Malama, S. Narasimhan","doi":"10.12783/shm2021/36336","DOIUrl":null,"url":null,"abstract":"Advances in robotic mapping, planning, and perception have spurred applications-based robotics research in the domain of infrastructure inspection and preservation. Though a significant portion of this research has centered around the use of unmanned aerial, ground, and underwater vehicles, research in the use of unmanned surface vehicles (USVs) is limited. USVs present a unique opportunity to capture combined maps above and below water, which is essential for the inspection of waterspanning bridges, harbors, dams, and levees. In this paper, we investigate the use of USVs for infrastructure inspection by outfitting a USV platform with a multibeam sonar, horizontally and vertically mounted lidars, several ruggedized RGB cameras, and a high-rate inertial measurement unit (IMU). By time-synchronizing all sensors, we are able to fuse information collected from lidar, camera, and IMU units via tightly-coupled lidar-visual-inertial (LVI) simultaneous mapping and localization (SLAM). We validate our methodology by collecting sensory data of an abandoned quarry and by generating a combined 3D point cloud map using lidar data, multibeam sonar data, and maximum a posteriori trajectory from the LVI SLAM approach. Experiments validate the performance of the proposed USV system, highlighting challenges in extrinsic calibration of non-overlapping sensors, sonar denoising, and refined inter-keyframe pose estimation for key-frame based SLAM approaches.","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"2006 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMBINED LIDAR AND SONAR MAPPING FOR PARTIALLY SUBMERGED INFRASTRUCTURE\",\"authors\":\"Alexander Thoms, Gabriel Earle, Nicholas Charron, Sven Malama, S. Narasimhan\",\"doi\":\"10.12783/shm2021/36336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in robotic mapping, planning, and perception have spurred applications-based robotics research in the domain of infrastructure inspection and preservation. Though a significant portion of this research has centered around the use of unmanned aerial, ground, and underwater vehicles, research in the use of unmanned surface vehicles (USVs) is limited. USVs present a unique opportunity to capture combined maps above and below water, which is essential for the inspection of waterspanning bridges, harbors, dams, and levees. In this paper, we investigate the use of USVs for infrastructure inspection by outfitting a USV platform with a multibeam sonar, horizontally and vertically mounted lidars, several ruggedized RGB cameras, and a high-rate inertial measurement unit (IMU). By time-synchronizing all sensors, we are able to fuse information collected from lidar, camera, and IMU units via tightly-coupled lidar-visual-inertial (LVI) simultaneous mapping and localization (SLAM). We validate our methodology by collecting sensory data of an abandoned quarry and by generating a combined 3D point cloud map using lidar data, multibeam sonar data, and maximum a posteriori trajectory from the LVI SLAM approach. Experiments validate the performance of the proposed USV system, highlighting challenges in extrinsic calibration of non-overlapping sensors, sonar denoising, and refined inter-keyframe pose estimation for key-frame based SLAM approaches.\",\"PeriodicalId\":180083,\"journal\":{\"name\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"volume\":\"2006 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/shm2021/36336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器人绘图、规划和感知方面的进步促进了基于应用的机器人技术在基础设施检查和保护领域的研究。尽管这项研究的很大一部分集中在无人驾驶的空中、地面和水下航行器的使用上,但无人驾驶水面航行器(usv)的使用研究是有限的。usv提供了一个独特的机会来捕捉水上和水下的综合地图,这对于检查跨水桥梁、港口、水坝和堤防至关重要。在本文中,我们通过为USV平台配备多波束声纳、水平和垂直安装的激光雷达、几个坚固耐用的RGB相机和一个高速率惯性测量单元(IMU),研究了USV在基础设施检测中的应用。通过对所有传感器进行时间同步,我们能够通过紧密耦合的激光雷达-视觉-惯性(LVI)同步测绘和定位(SLAM)融合从激光雷达、相机和IMU单元收集的信息。我们通过收集废弃采石场的感官数据,并使用激光雷达数据、多波束声纳数据和LVI SLAM方法的最大后验轨迹生成组合的3D点云图,从而验证了我们的方法。实验验证了所提出的USV系统的性能,突出了在非重叠传感器的外部校准、声纳去噪以及基于关键帧SLAM方法的关键帧间姿态估计等方面的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMBINED LIDAR AND SONAR MAPPING FOR PARTIALLY SUBMERGED INFRASTRUCTURE
Advances in robotic mapping, planning, and perception have spurred applications-based robotics research in the domain of infrastructure inspection and preservation. Though a significant portion of this research has centered around the use of unmanned aerial, ground, and underwater vehicles, research in the use of unmanned surface vehicles (USVs) is limited. USVs present a unique opportunity to capture combined maps above and below water, which is essential for the inspection of waterspanning bridges, harbors, dams, and levees. In this paper, we investigate the use of USVs for infrastructure inspection by outfitting a USV platform with a multibeam sonar, horizontally and vertically mounted lidars, several ruggedized RGB cameras, and a high-rate inertial measurement unit (IMU). By time-synchronizing all sensors, we are able to fuse information collected from lidar, camera, and IMU units via tightly-coupled lidar-visual-inertial (LVI) simultaneous mapping and localization (SLAM). We validate our methodology by collecting sensory data of an abandoned quarry and by generating a combined 3D point cloud map using lidar data, multibeam sonar data, and maximum a posteriori trajectory from the LVI SLAM approach. Experiments validate the performance of the proposed USV system, highlighting challenges in extrinsic calibration of non-overlapping sensors, sonar denoising, and refined inter-keyframe pose estimation for key-frame based SLAM approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NONLINEAR BULK WAVE PROPAGATION IN A MATERIAL WITH RANDOMLY DISTRIBUTED SYMMETRIC AND ASYMMETRIC HYSTERETIC NONLINEARITY SPATIAL FILTERING TECHNIQUE-BASED ENHANCEMENT OF THE RECONSTRUCTION ALGORITHM FOR THE PROBABILISTIC INSPECTION OF DAMAGE (RAPID) KOOPMAN OPERATOR BASED FAULT DIAGNOSTIC METHODS FOR MECHANICAL SYSTEMS ON THE APPLICATION OF VARIATIONAL AUTO ENCODERS (VAE) FOR DAMAGE DETECTION IN ROLLING ELEMENT BEARINGS INTELLIGENT IDENTIFICATION OF RIVET CORROSION ON STEEL TRUSS BRIDGE BY SINGLE-STAGE DETECTION NETWORK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1