基于高光谱成像的快速紧凑混合CNN血迹分类

Muhammad Hassaan Farooq Butt, Hamail Ayaz, Muhammad Ahmad, J. Li, R. Kuleev
{"title":"基于高光谱成像的快速紧凑混合CNN血迹分类","authors":"Muhammad Hassaan Farooq Butt, Hamail Ayaz, Muhammad Ahmad, J. Li, R. Kuleev","doi":"10.1109/CEC55065.2022.9870277","DOIUrl":null,"url":null,"abstract":"In forensic sciences, blood is a shred of essential evidence for reconstructing crime scenes. Blood identification and classification may help to confirm a suspect, although several chemical processes are used to recreate the crime scene. However, these approaches can have an impact on DNA analysis. A potential application of bloodstain identification and classification using Hyperspectral Imaging (HSI) can be used as substance clas-sification in forensic science for crime scene analysis. Therefore, this work proposes the use of a fast and compact Hybrid CNN to process HSI data for bloodstain identification and classification. For experimental and validation purposes, we perform exper-iments on a publicly available Hyperspectral-based Bloodstain dataset. This dataset has different types of substances i.e., blood and blood-like compounds, for instance, ketchup, artificial blood, beetroot juice, poster paint, tomato concentrate, acrylic paint, uncertain blood. We compare the results with state-of-the-art 3D CNN model and examine the results in detail and present a discussion of each tested architecture with limited availability of the training samples (e.g., only 5 % (792 samples) of the data samples are used to train the model, and validated on 5 % (792 samples) data samples and finally blindly tested on 90 % (14260 samples) of the data samples). The source code can be access on https://github.com/MHassaanButt/FCHCNN-for-HSIC","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Fast and Compact Hybrid CNN for Hyperspectral Imaging-based Bloodstain Classification\",\"authors\":\"Muhammad Hassaan Farooq Butt, Hamail Ayaz, Muhammad Ahmad, J. Li, R. Kuleev\",\"doi\":\"10.1109/CEC55065.2022.9870277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In forensic sciences, blood is a shred of essential evidence for reconstructing crime scenes. Blood identification and classification may help to confirm a suspect, although several chemical processes are used to recreate the crime scene. However, these approaches can have an impact on DNA analysis. A potential application of bloodstain identification and classification using Hyperspectral Imaging (HSI) can be used as substance clas-sification in forensic science for crime scene analysis. Therefore, this work proposes the use of a fast and compact Hybrid CNN to process HSI data for bloodstain identification and classification. For experimental and validation purposes, we perform exper-iments on a publicly available Hyperspectral-based Bloodstain dataset. This dataset has different types of substances i.e., blood and blood-like compounds, for instance, ketchup, artificial blood, beetroot juice, poster paint, tomato concentrate, acrylic paint, uncertain blood. We compare the results with state-of-the-art 3D CNN model and examine the results in detail and present a discussion of each tested architecture with limited availability of the training samples (e.g., only 5 % (792 samples) of the data samples are used to train the model, and validated on 5 % (792 samples) data samples and finally blindly tested on 90 % (14260 samples) of the data samples). The source code can be access on https://github.com/MHassaanButt/FCHCNN-for-HSIC\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在法医科学中,血液是重建犯罪现场的重要证据。血液鉴定和分类可能有助于确认嫌疑人,尽管需要使用几种化学过程来重现犯罪现场。然而,这些方法可能会对DNA分析产生影响。高光谱成像(HSI)技术在血迹识别和分类中的潜在应用,可以作为犯罪现场分析的法医学物质分类。因此,这项工作提出使用快速紧凑的Hybrid CNN来处理HSI数据,用于血迹识别和分类。为了实验和验证的目的,我们在一个公开可用的基于高光谱的血迹数据集上进行实验。这个数据集有不同类型的物质,例如,血液和类似血液的化合物,例如,番茄酱,人造血液,甜菜根汁,海报漆,番茄浓缩液,丙烯酸漆,不确定的血液。我们将结果与最先进的3D CNN模型进行比较,并详细检查结果,并在训练样本可用性有限的情况下(例如,只有5%(792个样本)的数据样本用于训练模型,并在5%(792个样本)的数据样本上进行验证,最后在90%(14260个样本)的数据样本上进行盲测)对每个测试架构进行了讨论。源代码可以在https://github.com/MHassaanButt/FCHCNN-for-HSIC上访问
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast and Compact Hybrid CNN for Hyperspectral Imaging-based Bloodstain Classification
In forensic sciences, blood is a shred of essential evidence for reconstructing crime scenes. Blood identification and classification may help to confirm a suspect, although several chemical processes are used to recreate the crime scene. However, these approaches can have an impact on DNA analysis. A potential application of bloodstain identification and classification using Hyperspectral Imaging (HSI) can be used as substance clas-sification in forensic science for crime scene analysis. Therefore, this work proposes the use of a fast and compact Hybrid CNN to process HSI data for bloodstain identification and classification. For experimental and validation purposes, we perform exper-iments on a publicly available Hyperspectral-based Bloodstain dataset. This dataset has different types of substances i.e., blood and blood-like compounds, for instance, ketchup, artificial blood, beetroot juice, poster paint, tomato concentrate, acrylic paint, uncertain blood. We compare the results with state-of-the-art 3D CNN model and examine the results in detail and present a discussion of each tested architecture with limited availability of the training samples (e.g., only 5 % (792 samples) of the data samples are used to train the model, and validated on 5 % (792 samples) data samples and finally blindly tested on 90 % (14260 samples) of the data samples). The source code can be access on https://github.com/MHassaanButt/FCHCNN-for-HSIC
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1