Muhammad Hassaan Farooq Butt, Hamail Ayaz, Muhammad Ahmad, J. Li, R. Kuleev
{"title":"基于高光谱成像的快速紧凑混合CNN血迹分类","authors":"Muhammad Hassaan Farooq Butt, Hamail Ayaz, Muhammad Ahmad, J. Li, R. Kuleev","doi":"10.1109/CEC55065.2022.9870277","DOIUrl":null,"url":null,"abstract":"In forensic sciences, blood is a shred of essential evidence for reconstructing crime scenes. Blood identification and classification may help to confirm a suspect, although several chemical processes are used to recreate the crime scene. However, these approaches can have an impact on DNA analysis. A potential application of bloodstain identification and classification using Hyperspectral Imaging (HSI) can be used as substance clas-sification in forensic science for crime scene analysis. Therefore, this work proposes the use of a fast and compact Hybrid CNN to process HSI data for bloodstain identification and classification. For experimental and validation purposes, we perform exper-iments on a publicly available Hyperspectral-based Bloodstain dataset. This dataset has different types of substances i.e., blood and blood-like compounds, for instance, ketchup, artificial blood, beetroot juice, poster paint, tomato concentrate, acrylic paint, uncertain blood. We compare the results with state-of-the-art 3D CNN model and examine the results in detail and present a discussion of each tested architecture with limited availability of the training samples (e.g., only 5 % (792 samples) of the data samples are used to train the model, and validated on 5 % (792 samples) data samples and finally blindly tested on 90 % (14260 samples) of the data samples). The source code can be access on https://github.com/MHassaanButt/FCHCNN-for-HSIC","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Fast and Compact Hybrid CNN for Hyperspectral Imaging-based Bloodstain Classification\",\"authors\":\"Muhammad Hassaan Farooq Butt, Hamail Ayaz, Muhammad Ahmad, J. Li, R. Kuleev\",\"doi\":\"10.1109/CEC55065.2022.9870277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In forensic sciences, blood is a shred of essential evidence for reconstructing crime scenes. Blood identification and classification may help to confirm a suspect, although several chemical processes are used to recreate the crime scene. However, these approaches can have an impact on DNA analysis. A potential application of bloodstain identification and classification using Hyperspectral Imaging (HSI) can be used as substance clas-sification in forensic science for crime scene analysis. Therefore, this work proposes the use of a fast and compact Hybrid CNN to process HSI data for bloodstain identification and classification. For experimental and validation purposes, we perform exper-iments on a publicly available Hyperspectral-based Bloodstain dataset. This dataset has different types of substances i.e., blood and blood-like compounds, for instance, ketchup, artificial blood, beetroot juice, poster paint, tomato concentrate, acrylic paint, uncertain blood. We compare the results with state-of-the-art 3D CNN model and examine the results in detail and present a discussion of each tested architecture with limited availability of the training samples (e.g., only 5 % (792 samples) of the data samples are used to train the model, and validated on 5 % (792 samples) data samples and finally blindly tested on 90 % (14260 samples) of the data samples). The source code can be access on https://github.com/MHassaanButt/FCHCNN-for-HSIC\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fast and Compact Hybrid CNN for Hyperspectral Imaging-based Bloodstain Classification
In forensic sciences, blood is a shred of essential evidence for reconstructing crime scenes. Blood identification and classification may help to confirm a suspect, although several chemical processes are used to recreate the crime scene. However, these approaches can have an impact on DNA analysis. A potential application of bloodstain identification and classification using Hyperspectral Imaging (HSI) can be used as substance clas-sification in forensic science for crime scene analysis. Therefore, this work proposes the use of a fast and compact Hybrid CNN to process HSI data for bloodstain identification and classification. For experimental and validation purposes, we perform exper-iments on a publicly available Hyperspectral-based Bloodstain dataset. This dataset has different types of substances i.e., blood and blood-like compounds, for instance, ketchup, artificial blood, beetroot juice, poster paint, tomato concentrate, acrylic paint, uncertain blood. We compare the results with state-of-the-art 3D CNN model and examine the results in detail and present a discussion of each tested architecture with limited availability of the training samples (e.g., only 5 % (792 samples) of the data samples are used to train the model, and validated on 5 % (792 samples) data samples and finally blindly tested on 90 % (14260 samples) of the data samples). The source code can be access on https://github.com/MHassaanButt/FCHCNN-for-HSIC