{"title":"SDN网络主备控制器布局联合优化及可用链路升级","authors":"Dorabella Santos , Teresa Gomes","doi":"10.1016/j.osn.2021.100634","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In Software-Defined Networking (SDN), the control and data planes are decoupled, leading to a more programmable and efficient network management. In this paper, the controller placement problem in SDN is addressed, jointly with the problem of exploring a high-availability tree subgraph, in order to support delay and availability requirements between the switches and the controllers. We consider that each switch connects to a primary and to a backup controller. We formulate the joint optimization model as an </span>integer linear programming model (ILP), and propose a </span>heuristic method when the exact model becomes impractical. Furthermore, we compare two ILP formulations, and we also compare the controller redundancy solutions with those considering path redundancy alone.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"42 ","pages":"Article 100634"},"PeriodicalIF":1.9000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osn.2021.100634","citationCount":"6","resultStr":"{\"title\":\"Joint optimization of primary and backup controller placement and availability link upgrade in SDN networks\",\"authors\":\"Dorabella Santos , Teresa Gomes\",\"doi\":\"10.1016/j.osn.2021.100634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>In Software-Defined Networking (SDN), the control and data planes are decoupled, leading to a more programmable and efficient network management. In this paper, the controller placement problem in SDN is addressed, jointly with the problem of exploring a high-availability tree subgraph, in order to support delay and availability requirements between the switches and the controllers. We consider that each switch connects to a primary and to a backup controller. We formulate the joint optimization model as an </span>integer linear programming model (ILP), and propose a </span>heuristic method when the exact model becomes impractical. Furthermore, we compare two ILP formulations, and we also compare the controller redundancy solutions with those considering path redundancy alone.</p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"42 \",\"pages\":\"Article 100634\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.osn.2021.100634\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157342772100031X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157342772100031X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Joint optimization of primary and backup controller placement and availability link upgrade in SDN networks
In Software-Defined Networking (SDN), the control and data planes are decoupled, leading to a more programmable and efficient network management. In this paper, the controller placement problem in SDN is addressed, jointly with the problem of exploring a high-availability tree subgraph, in order to support delay and availability requirements between the switches and the controllers. We consider that each switch connects to a primary and to a backup controller. We formulate the joint optimization model as an integer linear programming model (ILP), and propose a heuristic method when the exact model becomes impractical. Furthermore, we compare two ILP formulations, and we also compare the controller redundancy solutions with those considering path redundancy alone.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks