基于神经自适应控制的活性污泥生物反应器溶解氧控制

S. Mirghasemi, C. Macnab, A. Chu
{"title":"基于神经自适应控制的活性污泥生物反应器溶解氧控制","authors":"S. Mirghasemi, C. Macnab, A. Chu","doi":"10.1109/CICA.2014.7013237","DOIUrl":null,"url":null,"abstract":"In a mixed liquor biological wastewater treatment process, the dissolved oxygen level is a very important factor. This paper proposes an adaptive neural network control strategy to maintain a set point in aerated bioreactors. The proposed method prevents weight drift and associated bursting, without sacrificing performance. The controller is tested on a simplified version of the benchmark simulation model number 1, with disturbances in influent. The proposed controller outperforms PI control.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Dissolved oxygen control of activated sludge biorectors using neural-adaptive control\",\"authors\":\"S. Mirghasemi, C. Macnab, A. Chu\",\"doi\":\"10.1109/CICA.2014.7013237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a mixed liquor biological wastewater treatment process, the dissolved oxygen level is a very important factor. This paper proposes an adaptive neural network control strategy to maintain a set point in aerated bioreactors. The proposed method prevents weight drift and associated bursting, without sacrificing performance. The controller is tested on a simplified version of the benchmark simulation model number 1, with disturbances in influent. The proposed controller outperforms PI control.\",\"PeriodicalId\":340740,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2014.7013237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在混合液生物废水处理过程中,溶解氧水平是一个非常重要的因素。本文提出了一种自适应神经网络控制策略,以保持曝气生物反应器的设定点。所提出的方法在不牺牲性能的情况下防止了重量漂移和相关的爆裂。该控制器在基准仿真模型1的简化版本上进行了测试,其中有干扰。该控制器优于PI控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dissolved oxygen control of activated sludge biorectors using neural-adaptive control
In a mixed liquor biological wastewater treatment process, the dissolved oxygen level is a very important factor. This paper proposes an adaptive neural network control strategy to maintain a set point in aerated bioreactors. The proposed method prevents weight drift and associated bursting, without sacrificing performance. The controller is tested on a simplified version of the benchmark simulation model number 1, with disturbances in influent. The proposed controller outperforms PI control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-class LS-SVM with zero leave-one-out error Enumeration of reachable, forbidden, live states of gen-left k-net system (with a non-sharing resource place) of Petri Nets Context-based adaptive robot behavior learning model (CARB-LM) New multiagent coordination optimization algorithms for mixed-binary nonlinear programming with control applications Ultra high frequency polynomial and sine artificial higher order neural networks for control signal generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1