一种用于房颤检测的轻量级一维深度学习模型

Q. B. Soares, R. Monteiro, F. Jatene, M. A. Gutierrez
{"title":"一种用于房颤检测的轻量级一维深度学习模型","authors":"Q. B. Soares, R. Monteiro, F. Jatene, M. A. Gutierrez","doi":"10.22489/CinC.2022.220","DOIUrl":null,"url":null,"abstract":"Continuous rhythm monitoring using wearable devices is a potential tool for early identification of atrial fibril-lation (AF), the most frequent cardiac arrhythmia (with 0,51% worldwide prevalence, increasing with time), and is also a tool for remote monitoring patients after cardiac surgery. However, AF detection directly through wearable devices is limited by the computational complexity of the classifier model. In this work we propose a lightweight AF classifier model based on the VGG-11 architecture (Lite VGG-11), focusing on reducing the number of parameters and nu-merical operations. Using a low number of filters, depth-wise separable convolution, and global pooling, this model has only 20,454 parameters and needs 6.9 MFLOP to make an inference for an input of 10 seconds of the ECG leads I and II, sampled at 200 Hz. To test its effectiveness for AF detection we used the PhysioNet/CinC Challenge 2021 public dataset, stratifying the classes into sinus rhythm, AF, and other rhythms. After 10 Monte Carlo cross-validation splits, with 24,260 unbalanced samples for training and 1,536 balanced samples for validation and testing, the observed met-rics (mean±standard deviation) were: Se 94.1±0.1%; Sp 91.9±0.8%; F1-Score 89.50.7±%; and AUC 96.1±0.6%.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Lightweight Unidimensional Deep Learning Model for Atrial Fibrillation Detection\",\"authors\":\"Q. B. Soares, R. Monteiro, F. Jatene, M. A. Gutierrez\",\"doi\":\"10.22489/CinC.2022.220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous rhythm monitoring using wearable devices is a potential tool for early identification of atrial fibril-lation (AF), the most frequent cardiac arrhythmia (with 0,51% worldwide prevalence, increasing with time), and is also a tool for remote monitoring patients after cardiac surgery. However, AF detection directly through wearable devices is limited by the computational complexity of the classifier model. In this work we propose a lightweight AF classifier model based on the VGG-11 architecture (Lite VGG-11), focusing on reducing the number of parameters and nu-merical operations. Using a low number of filters, depth-wise separable convolution, and global pooling, this model has only 20,454 parameters and needs 6.9 MFLOP to make an inference for an input of 10 seconds of the ECG leads I and II, sampled at 200 Hz. To test its effectiveness for AF detection we used the PhysioNet/CinC Challenge 2021 public dataset, stratifying the classes into sinus rhythm, AF, and other rhythms. After 10 Monte Carlo cross-validation splits, with 24,260 unbalanced samples for training and 1,536 balanced samples for validation and testing, the observed met-rics (mean±standard deviation) were: Se 94.1±0.1%; Sp 91.9±0.8%; F1-Score 89.50.7±%; and AUC 96.1±0.6%.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用可穿戴设备进行连续节律监测是早期识别房颤(AF)的潜在工具,房颤是最常见的心律失常(全球患病率为0.51%,随着时间的推移而增加),也是心脏手术后远程监测患者的工具。然而,直接通过可穿戴设备进行自动对焦检测受到分类器模型计算复杂度的限制。在这项工作中,我们提出了一个基于VGG-11架构的轻量级AF分类器模型(Lite VGG-11),重点是减少参数数量和数值运算。使用低数量的滤波器,深度可分离卷积和全局池化,该模型只有20,454个参数,需要6.9 MFLOP来推断输入10秒的ECG导联I和II,采样频率为200hz。为了测试其对房颤检测的有效性,我们使用了PhysioNet/CinC Challenge 2021公共数据集,将类分为窦性心律、房颤和其他心律。经过10次蒙特卡罗交叉验证分割,24,260个非平衡样本用于训练,1,536个平衡样本用于验证和测试,观察到的指标(均数±标准差)为:Se 94.1±0.1%;Sp 91.9±0.8%;F1-Score 89.50.7±%;AUC为96.1±0.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Lightweight Unidimensional Deep Learning Model for Atrial Fibrillation Detection
Continuous rhythm monitoring using wearable devices is a potential tool for early identification of atrial fibril-lation (AF), the most frequent cardiac arrhythmia (with 0,51% worldwide prevalence, increasing with time), and is also a tool for remote monitoring patients after cardiac surgery. However, AF detection directly through wearable devices is limited by the computational complexity of the classifier model. In this work we propose a lightweight AF classifier model based on the VGG-11 architecture (Lite VGG-11), focusing on reducing the number of parameters and nu-merical operations. Using a low number of filters, depth-wise separable convolution, and global pooling, this model has only 20,454 parameters and needs 6.9 MFLOP to make an inference for an input of 10 seconds of the ECG leads I and II, sampled at 200 Hz. To test its effectiveness for AF detection we used the PhysioNet/CinC Challenge 2021 public dataset, stratifying the classes into sinus rhythm, AF, and other rhythms. After 10 Monte Carlo cross-validation splits, with 24,260 unbalanced samples for training and 1,536 balanced samples for validation and testing, the observed met-rics (mean±standard deviation) were: Se 94.1±0.1%; Sp 91.9±0.8%; F1-Score 89.50.7±%; and AUC 96.1±0.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Nonlinear Dynamic Response of Intrapartum Fetal Heart Rate to Uterine Pressure Heart Pulse Demodulation from Emfit Mattress Sensor Using Spectral and Source Separation Techniques Automated Algorithm for QRS Detection in Cardiac Arrest Patients with PEA Extraction Algorithm for Morphologically Preserved Non-Invasive Multi-Channel Fetal ECG Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1