{"title":"自动驾驶车辆最优时变滑模变道控制","authors":"Jin Sung Kim, Seung-Hi Lee, C. Chung","doi":"10.23919/acc45564.2020.9147780","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a scheme of lane change control for automated vehicle without path planning and its tracking. It is not easy to make path planning for lane change although there are several method for the path planning such as using a combination of sinusoidal functions and high order polynomial functions. In this paper, time-varying hyperplane is utilized to cope with the problem of path planning and control for lateral motion in lane change control. Designing a sliding hyperplane in terms of lateral position and velocity is presented so that the lateral error converges uniformly and smoothly during lane changing irrespective of the amount of lateral offset. The simulation-based optimization approach is utilized to obtain the optimal time-varying sliding hyperplane. The stability of the closed-loop system is proved with the analysis of a discrete time-varying system. The effectiveness of the proposed method is validated with numerical simulation showing the uniform settling of lateral tracking error no matter what the desired lateral offset is commanded.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Lane Change Control with Optimal Time-varying Sliding Mode in Automated Driving Vehicle\",\"authors\":\"Jin Sung Kim, Seung-Hi Lee, C. Chung\",\"doi\":\"10.23919/acc45564.2020.9147780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a scheme of lane change control for automated vehicle without path planning and its tracking. It is not easy to make path planning for lane change although there are several method for the path planning such as using a combination of sinusoidal functions and high order polynomial functions. In this paper, time-varying hyperplane is utilized to cope with the problem of path planning and control for lateral motion in lane change control. Designing a sliding hyperplane in terms of lateral position and velocity is presented so that the lateral error converges uniformly and smoothly during lane changing irrespective of the amount of lateral offset. The simulation-based optimization approach is utilized to obtain the optimal time-varying sliding hyperplane. The stability of the closed-loop system is proved with the analysis of a discrete time-varying system. The effectiveness of the proposed method is validated with numerical simulation showing the uniform settling of lateral tracking error no matter what the desired lateral offset is commanded.\",\"PeriodicalId\":288450,\"journal\":{\"name\":\"2020 American Control Conference (ACC)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/acc45564.2020.9147780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc45564.2020.9147780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lane Change Control with Optimal Time-varying Sliding Mode in Automated Driving Vehicle
In this paper, we propose a scheme of lane change control for automated vehicle without path planning and its tracking. It is not easy to make path planning for lane change although there are several method for the path planning such as using a combination of sinusoidal functions and high order polynomial functions. In this paper, time-varying hyperplane is utilized to cope with the problem of path planning and control for lateral motion in lane change control. Designing a sliding hyperplane in terms of lateral position and velocity is presented so that the lateral error converges uniformly and smoothly during lane changing irrespective of the amount of lateral offset. The simulation-based optimization approach is utilized to obtain the optimal time-varying sliding hyperplane. The stability of the closed-loop system is proved with the analysis of a discrete time-varying system. The effectiveness of the proposed method is validated with numerical simulation showing the uniform settling of lateral tracking error no matter what the desired lateral offset is commanded.