Shenghang Xu, M. Du, Jia Li, K. Yan, B. Cai, Quanfeng He, Q. Fang, O. Magdysyuk, Bin Liu, Yong Yang, Yong Liu
{"title":"具有分层“砖瓦”微观结构的仿生Ti-Ta复合材料","authors":"Shenghang Xu, M. Du, Jia Li, K. Yan, B. Cai, Quanfeng He, Q. Fang, O. Magdysyuk, Bin Liu, Yong Yang, Yong Liu","doi":"10.2139/ssrn.3425440","DOIUrl":null,"url":null,"abstract":"Nature materials, such as bones and nacre, achieve excellent balance of toughness and strength via a hierarchical \"brick-and-mortar\" microstructure, which is an attractive model for engineering materials design. Here, we produced nacre-like Ti-Ta metallic composites via a powder metallurgy process, during which milled powders were sintered by spark plasma sintering, followed by hot rolling and then annealing. The structure consists of soft Ta-enriched regions and hard Ti-enriched regions in a hierarchical and laminated fashion. The microstructural heterogeneity spans several scales due to the diffusion between Ti and Ta. This yields a novel metal-metal composite with a balanced combination of strength and ductility (1226 MPa ultimate tensile strength and 20.8% elongation), outperforming most of conventional Ti based alloys and composites. Via complementary in situ synchrotron X-ray diffraction and electron microscopies, it is found out that multiple micromechanisms are active, including nano-particle and dislocation localized strengthening as well as a \"phase transformation induced plasticity. The manufacturing route developed here is versatile, capable of making high performance bio-mimic metallic composites.","PeriodicalId":180833,"journal":{"name":"Mechanical Properties & Deformation of Materials eJournal","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bio-Mimic Ti-Ta Composite with Hierarchical 'Brick-and-Mortar' Microstructure\",\"authors\":\"Shenghang Xu, M. Du, Jia Li, K. Yan, B. Cai, Quanfeng He, Q. Fang, O. Magdysyuk, Bin Liu, Yong Yang, Yong Liu\",\"doi\":\"10.2139/ssrn.3425440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nature materials, such as bones and nacre, achieve excellent balance of toughness and strength via a hierarchical \\\"brick-and-mortar\\\" microstructure, which is an attractive model for engineering materials design. Here, we produced nacre-like Ti-Ta metallic composites via a powder metallurgy process, during which milled powders were sintered by spark plasma sintering, followed by hot rolling and then annealing. The structure consists of soft Ta-enriched regions and hard Ti-enriched regions in a hierarchical and laminated fashion. The microstructural heterogeneity spans several scales due to the diffusion between Ti and Ta. This yields a novel metal-metal composite with a balanced combination of strength and ductility (1226 MPa ultimate tensile strength and 20.8% elongation), outperforming most of conventional Ti based alloys and composites. Via complementary in situ synchrotron X-ray diffraction and electron microscopies, it is found out that multiple micromechanisms are active, including nano-particle and dislocation localized strengthening as well as a \\\"phase transformation induced plasticity. The manufacturing route developed here is versatile, capable of making high performance bio-mimic metallic composites.\",\"PeriodicalId\":180833,\"journal\":{\"name\":\"Mechanical Properties & Deformation of Materials eJournal\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Properties & Deformation of Materials eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3425440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Properties & Deformation of Materials eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3425440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bio-Mimic Ti-Ta Composite with Hierarchical 'Brick-and-Mortar' Microstructure
Nature materials, such as bones and nacre, achieve excellent balance of toughness and strength via a hierarchical "brick-and-mortar" microstructure, which is an attractive model for engineering materials design. Here, we produced nacre-like Ti-Ta metallic composites via a powder metallurgy process, during which milled powders were sintered by spark plasma sintering, followed by hot rolling and then annealing. The structure consists of soft Ta-enriched regions and hard Ti-enriched regions in a hierarchical and laminated fashion. The microstructural heterogeneity spans several scales due to the diffusion between Ti and Ta. This yields a novel metal-metal composite with a balanced combination of strength and ductility (1226 MPa ultimate tensile strength and 20.8% elongation), outperforming most of conventional Ti based alloys and composites. Via complementary in situ synchrotron X-ray diffraction and electron microscopies, it is found out that multiple micromechanisms are active, including nano-particle and dislocation localized strengthening as well as a "phase transformation induced plasticity. The manufacturing route developed here is versatile, capable of making high performance bio-mimic metallic composites.