一种新的入侵检测大异构数据特征向量匹配方法

Marwa Elayni, F. Jemili, O. Korbaa, B. Solaiman
{"title":"一种新的入侵检测大异构数据特征向量匹配方法","authors":"Marwa Elayni, F. Jemili, O. Korbaa, B. Solaiman","doi":"10.1109/ATSIP49331.2020.9231671","DOIUrl":null,"url":null,"abstract":"Nowadays, the volume of data considerably increasing, the data is exploding on the scale of the Exabyte and the Zettabyte at an exceptionally high rate. These can be characterized as big data. Hence, the security of the network, Internet, websites, Iot devices and the organizations, of this growth is indispensable. Detecting intrusions in such a big heterogeneous data environment is challenging. In this paper, we will present a new representation of data that can support this big heterogeneous environment. We will use three different datasets and propose an automatically matching algorithm that measures the semantic similarity between each two features existing on different datasets. Thereafter, an approximate vector is created that any type of coming data can be stored. With this representation, we can have subsequently an efficient intrusion detection system that can be able to acknowledge any instance of the existing data in the networks.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new features vector matching for big heterogeneous data in intrusion detection context\",\"authors\":\"Marwa Elayni, F. Jemili, O. Korbaa, B. Solaiman\",\"doi\":\"10.1109/ATSIP49331.2020.9231671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the volume of data considerably increasing, the data is exploding on the scale of the Exabyte and the Zettabyte at an exceptionally high rate. These can be characterized as big data. Hence, the security of the network, Internet, websites, Iot devices and the organizations, of this growth is indispensable. Detecting intrusions in such a big heterogeneous data environment is challenging. In this paper, we will present a new representation of data that can support this big heterogeneous environment. We will use three different datasets and propose an automatically matching algorithm that measures the semantic similarity between each two features existing on different datasets. Thereafter, an approximate vector is created that any type of coming data can be stored. With this representation, we can have subsequently an efficient intrusion detection system that can be able to acknowledge any instance of the existing data in the networks.\",\"PeriodicalId\":384018,\"journal\":{\"name\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP49331.2020.9231671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,数据量显著增加,数据正以极快的速度以eb和zb的规模爆炸。这些可以被描述为大数据。因此,网络、互联网、网站、物联网设备和组织的安全,对这种增长是不可或缺的。在如此庞大的异构数据环境中检测入侵是一项挑战。在本文中,我们将提出一种新的数据表示,可以支持这种大型异构环境。我们将使用三个不同的数据集,并提出一种自动匹配算法,该算法测量不同数据集上存在的每两个特征之间的语义相似度。然后,创建一个近似向量,可以存储任何类型的传入数据。有了这种表示,我们就可以有一个有效的入侵检测系统,它能够识别网络中现有数据的任何实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new features vector matching for big heterogeneous data in intrusion detection context
Nowadays, the volume of data considerably increasing, the data is exploding on the scale of the Exabyte and the Zettabyte at an exceptionally high rate. These can be characterized as big data. Hence, the security of the network, Internet, websites, Iot devices and the organizations, of this growth is indispensable. Detecting intrusions in such a big heterogeneous data environment is challenging. In this paper, we will present a new representation of data that can support this big heterogeneous environment. We will use three different datasets and propose an automatically matching algorithm that measures the semantic similarity between each two features existing on different datasets. Thereafter, an approximate vector is created that any type of coming data can be stored. With this representation, we can have subsequently an efficient intrusion detection system that can be able to acknowledge any instance of the existing data in the networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches Generation of fuzzy evidence numbers for the evaluation of uncertainty measures Speckle Denoising of the Multipolarization Images by Hybrid Filters Identification of the user by using a hardware device Lightweight Hardware Architectures for the Piccolo Block Cipher in FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1