{"title":"基于sram的fpga的区域驱动部分重构","authors":"M. Vavouras, C. Bouganis","doi":"10.1109/ReConFig.2016.7857154","DOIUrl":null,"url":null,"abstract":"This paper presents an area-driven Field-Programmable Gate Array (FPGA) scrubbing technique based on partial reconfiguration for Single Event Upset (SEU) mitigation. The proposed method is compared with existing techniques such as blind and on-demand scrubbing on a novel SEU mitigation framework implemented on the ZYNQ platform, supporting various SEU and scrubbing rates. A design space exploration on the availability versus data transfers from a Double Data Rate Type 3 (DDR3) memory, shows that our approach outperforms blind scrubbing for a range of availability values when a second order polynomial IP is targeted. A comparison to an existing on-demand scrubbing technique based on Dual Modular Redundancy (DMR) shows that our approach saves up to 46% area for the same case study.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Area-driven partial reconfiguration for SEU mitigation on SRAM-based FPGAs\",\"authors\":\"M. Vavouras, C. Bouganis\",\"doi\":\"10.1109/ReConFig.2016.7857154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an area-driven Field-Programmable Gate Array (FPGA) scrubbing technique based on partial reconfiguration for Single Event Upset (SEU) mitigation. The proposed method is compared with existing techniques such as blind and on-demand scrubbing on a novel SEU mitigation framework implemented on the ZYNQ platform, supporting various SEU and scrubbing rates. A design space exploration on the availability versus data transfers from a Double Data Rate Type 3 (DDR3) memory, shows that our approach outperforms blind scrubbing for a range of availability values when a second order polynomial IP is targeted. A comparison to an existing on-demand scrubbing technique based on Dual Modular Redundancy (DMR) shows that our approach saves up to 46% area for the same case study.\",\"PeriodicalId\":431909,\"journal\":{\"name\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReConFig.2016.7857154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Area-driven partial reconfiguration for SEU mitigation on SRAM-based FPGAs
This paper presents an area-driven Field-Programmable Gate Array (FPGA) scrubbing technique based on partial reconfiguration for Single Event Upset (SEU) mitigation. The proposed method is compared with existing techniques such as blind and on-demand scrubbing on a novel SEU mitigation framework implemented on the ZYNQ platform, supporting various SEU and scrubbing rates. A design space exploration on the availability versus data transfers from a Double Data Rate Type 3 (DDR3) memory, shows that our approach outperforms blind scrubbing for a range of availability values when a second order polynomial IP is targeted. A comparison to an existing on-demand scrubbing technique based on Dual Modular Redundancy (DMR) shows that our approach saves up to 46% area for the same case study.