装配过程中复杂运动的演示运动规划

Yan Wang, K. Harada, Weiwei Wan
{"title":"装配过程中复杂运动的演示运动规划","authors":"Yan Wang, K. Harada, Weiwei Wan","doi":"10.1109/Humanoids43949.2019.9035043","DOIUrl":null,"url":null,"abstract":"Complex and skillful motions in actual assembly process are challenging for the robot to generate with existing motion planning approaches, because some key poses during the human assembly can be too skillful for the robot to realize automatically. In order to deal with this problem, this paper develops a motion planning method using skillful motions from demonstration, which can be applied to complete robotic assembly process including complex and skillful motions. In order to demonstrate conveniently without redundant third-party devices, we attach augmented reality (AR) markers to the manipulated object to track and capture poses of the object during the human assembly process, which are employed as key poses to execute motion planning by the planner. Derivative of every key pose serves as criterion to determine the priority of use of key poses in order to accelerate the motion planning. The effectiveness of the presented method is verified through some numerical examples and actual robot experiments.","PeriodicalId":404758,"journal":{"name":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Motion Planning through Demonstration to Deal with Complex Motions in Assembly Process\",\"authors\":\"Yan Wang, K. Harada, Weiwei Wan\",\"doi\":\"10.1109/Humanoids43949.2019.9035043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex and skillful motions in actual assembly process are challenging for the robot to generate with existing motion planning approaches, because some key poses during the human assembly can be too skillful for the robot to realize automatically. In order to deal with this problem, this paper develops a motion planning method using skillful motions from demonstration, which can be applied to complete robotic assembly process including complex and skillful motions. In order to demonstrate conveniently without redundant third-party devices, we attach augmented reality (AR) markers to the manipulated object to track and capture poses of the object during the human assembly process, which are employed as key poses to execute motion planning by the planner. Derivative of every key pose serves as criterion to determine the priority of use of key poses in order to accelerate the motion planning. The effectiveness of the presented method is verified through some numerical examples and actual robot experiments.\",\"PeriodicalId\":404758,\"journal\":{\"name\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids43949.2019.9035043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids43949.2019.9035043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在实际装配过程中,由于人体装配过程中的一些关键动作过于熟练,机器人无法自动实现,现有的运动规划方法对机器人产生复杂而熟练的动作是一个挑战。为了解决这一问题,本文提出了一种基于灵巧动作的运动规划方法,该方法可应用于包括复杂动作和灵巧动作在内的机器人装配全过程。为了方便演示,不需要多余的第三方设备,我们将增强现实(AR)标记附加到被操纵对象上,以跟踪和捕获对象在人体组装过程中的姿态,并将其作为规划器执行运动规划的关键姿态。每个关键姿态的导数作为确定关键姿态使用优先级的标准,以加速运动规划。通过数值算例和实际机器人实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion Planning through Demonstration to Deal with Complex Motions in Assembly Process
Complex and skillful motions in actual assembly process are challenging for the robot to generate with existing motion planning approaches, because some key poses during the human assembly can be too skillful for the robot to realize automatically. In order to deal with this problem, this paper develops a motion planning method using skillful motions from demonstration, which can be applied to complete robotic assembly process including complex and skillful motions. In order to demonstrate conveniently without redundant third-party devices, we attach augmented reality (AR) markers to the manipulated object to track and capture poses of the object during the human assembly process, which are employed as key poses to execute motion planning by the planner. Derivative of every key pose serves as criterion to determine the priority of use of key poses in order to accelerate the motion planning. The effectiveness of the presented method is verified through some numerical examples and actual robot experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Position-Based Lateral Balance Control for Knee-Stretched Biped Robot Mechanistic Properties of Five-bar Parallel Mechanism for Leg Structure Based on Spring Loaded Inverted Pendulum A deep reinforcement learning based approach towards generating human walking behavior with a neuromuscular model Using Virtual Reality to Examine the Neural and Physiological Anxiety-Related Responses to Balance-Demanding Target-Reaching Leaning Tasks Motion Retargeting and Control for Teleoperated Physical Human-Robot Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1